Probing the mechanical stability of proteins using the atomic force microscope

2007 ◽  
Vol 35 (6) ◽  
pp. 1564-1568 ◽  
Author(s):  
D.J. Brockwell

The mechanical strength of single protein molecules can be investigated by using the atomic force microscope. By applying this technique to a wide range of proteins, it appears that the type of secondary structure and its orientation relative to the extension points are important determinants of mechanical strength. Unlike chemical denaturants, force acts locally and the mechanical strength of a protein may thus appear to be mechanically weak or strong by simply varying the region of the landscape through which the protein is unfolded. Similarly, the effect of ligand binding on the mechanical resistance of a protein may also depend on the relative locations of the binding site and force application. Mechanical deformation may thus facilitate the degradation or remodelling of thermodynamically stable proteins and their complexes in vivo.

Author(s):  
Zackary N. Scholl ◽  
Qing Li ◽  
Eric Josephs ◽  
Dimitra Apostolidou ◽  
Piotr E. Marszalek

2021 ◽  
pp. 1-23
Author(s):  
Rafiul Shihab ◽  
Tasmirul Jalil ◽  
Burak Gulsacan ◽  
Matteo Aureli ◽  
Ryan Tung

Abstract Numerous nanometrology techniques concerned with probing a wide range of frequency dependent properties would benefit from a cantilevered sensor with tunable natural frequencies. In this work, we propose a method to arbitrarily tune the stiffness and natural frequencies of a microplate sensor for atomic force microscope applications, thereby allowing resonance amplification at a broad range of frequencies. This method is predicated on the principle of curvature-based stiffening. A macroscale experiment is conducted to verify the feasibility of the method. Next, a microscale finite element analysis is conducted on a proof-of-concept device. We show that both the stiffness and various natural frequencies of the device can be highly controlled through applied transverse curvature. Dynamic phenomena encountered in the method, such as eigenvalue curve veering, are discussed and methods are presented to accommodate these phenomena. We believe that this study will facilitate the development of future curvature-based microscale sensors for atomic force microscopy applications.


2018 ◽  
Vol 20 (2) ◽  
pp. 259-264
Author(s):  
A V Kosulin ◽  
L N Beldiman ◽  
S V Kromsky ◽  
A A Kokorina ◽  
E V Mikhailova ◽  
...  

Short bowel syndrome is an important clinical problem characterized by a high incidence of serious complications, deaths and socioeconomic consequences. Parenteral nutrition provides only a temporary solution without reducing the risk of complications. This applies equally to surgical treatment, in particular to small intestine transplantation and related concomitant interventions, which only facilitate the adaptation of the intestine to new conditions. Potential approaches have been analyzed in the treatment of the syndrome of the small intestine, which can be offered by dynamically developing tissue engineering. Various types of carriers and cell types that are used in experiments for obtaining tissue engineering designs of the intestine are discussed. A wide range of variants of such constructions is analyzed that can lead to obtaining an organ prosthesis with a cellular organization and mechanical stability similar to those of the native small intestine, which will ensure the necessary biocompatibility. It is established that one of the optimal carriers for today are extracellular matrices obtained by decellularization of the native small intestine. This process allows to preserve the microarchitecture of the small intestine, which greatly facilitates the process of filling the matrix with cells both in vitro and in vivo. It has also been established that mesenchymal stromal multipotent cells and organoid units obtained from the tissue of the native small intestine are particularly prominent among the most promising participants in the cellular ensemble.


1997 ◽  
Vol 5 (4) ◽  
pp. 3-4
Author(s):  
Stephen W. Carmichael

As reviewed in this column on previous occasions, the atomic force microscope (AFM) is steadily making headway as an instrument that can make important contributions to biologic observations. Although the AFM is capable of operating in an aqueous environment, relatively little use has been made of this property to examine cellular structures under conditions that resemble those in vivo. A breakthrough in this regard was recently made by Stefan Schneider, Kumudesh Sritharan, John Geibel, Hans Oberleithner, and Bhanu Jena. of Yale University and the University of Würzburg.


2019 ◽  
Author(s):  
Mihyun Lee ◽  
Kraun Bae ◽  
Clara Levinson ◽  
Marcy Zenobi-Wong

AbstractThe field of bioprinting has made significant recent progress towards engineering tissues with increasing complexity and functionality. It remains challenging, however, to develop bioinks with optimal biocompatibility and good printing fidelity. Here, we demonstrate enhanced printability of a polymer-based bioink based on dynamic covalent linkages between nanoparticles (NPs) and polymers, which retains good biocompatibility. Amine-presenting silica NPs (ca. 45 nm) were added to a polymeric ink containing oxidized alginate (OxA). The formation of reversible imine bonds between amines on the NPs and aldehydes of OxA lead to significantly improved rheological properties and high printing fidelity. In particular, the yield stress increased with increasing amounts of NPs (14.5 Pa without NPs, 79 Pa with 2 wt% NPs). In addition, the presence of dynamic covalent linkages in the gel provided improved mechanical stability over 7 days compared to ionically crosslinked gels. The nanocomposite ink retained high printability and mechanical strength, resulting in generation of centimetre-scale porous constructs and an ear structure with overhangs and high structural fidelity. Furthermore, the nanocomposite ink supported both in vitro and in vivo maturation of bioprinted gels containing chondrocytes. This approach based on simple oxidation can be applied to any polysaccharide, thus the widely applicability of the method is expected to advance the field towards the goal of precision bioprinting.


2021 ◽  
Vol 17 ◽  
Author(s):  
Ke Xu ◽  
Qiang An ◽  
Peng Li

: The atomic force microscope (AFM) is widely used in many fields such as biology, materials, and physics due to its advantages of simple sample preparation, high-resolution topography measurement and wide range of applications. However, the low scanning speed of traditional AFM limits its dynamics process monitoring and other further application. Therefore, the improvement of AFM scanning speed has become more and more important. In this review, the working principle of AFM is first proposed. Then, we introduce the improvements of cantilever, drive mechanism, and control method of the high-speed atomic force microscope (HS-AFM). Finally, we provide the next developments of HS-AFM.


Sign in / Sign up

Export Citation Format

Share Document