Controlling translation elongation efficiency: tRNA regulation of ribosome flux on the mRNA

2014 ◽  
Vol 42 (1) ◽  
pp. 160-165 ◽  
Author(s):  
Barbara Gorgoni ◽  
Elizabeth Marshall ◽  
Matthew R. McFarland ◽  
M. Carmen Romano ◽  
Ian Stansfield

Gene expression can be regulated by a wide variety of mechanisms. One example concerns the growing body of evidence that the protein-production rate can be regulated at the level of translation elongation by controlling ribosome flux across the mRNA. Variations in the abundance of tRNA molecules cause different rates of translation of their counterpart codons. This, in turn, produces a variable landscape of translational rate across each and every mRNA, with the dynamic formation and deformation of ribosomal queues being regulated by both tRNA availability and the rates of translation initiation and termination. In the present article, a range of examples of tRNA control of gene expression are reviewed, and the use of mathematical modelling to develop a predictive understanding of the consequences of that regulation is discussed and explained. These findings encourage a view that predicting the protein-synthesis rate of each mRNA requires a holistic understanding of how each stage of translation, including elongation, contributes to the overall protein-production rate.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sarah L. Gillen ◽  
Chiara Giacomelli ◽  
Kelly Hodge ◽  
Sara Zanivan ◽  
Martin Bushell ◽  
...  

Abstract Background Regulation of protein output at the level of translation allows for a rapid adaptation to dynamic changes to the cell’s requirements. This precise control of gene expression is achieved by complex and interlinked biochemical processes that modulate both the protein synthesis rate and stability of each individual mRNA. A major factor coordinating this regulation is the Ccr4-Not complex. Despite playing a role in most stages of the mRNA life cycle, no attempt has been made to take a global integrated view of how the Ccr4-Not complex affects gene expression. Results This study has taken a comprehensive approach to investigate post-transcriptional regulation mediated by the Ccr4-Not complex assessing steady-state mRNA levels, ribosome position, mRNA stability, and protein production transcriptome-wide. Depletion of the scaffold protein CNOT1 results in a global upregulation of mRNA stability and the preferential stabilization of mRNAs enriched for G/C-ending codons. We also uncover that mRNAs targeted to the ER for their translation have reduced translational efficiency when CNOT1 is depleted, specifically downstream of the signal sequence cleavage site. In contrast, translationally upregulated mRNAs are normally localized in p-bodies, contain disorder-promoting amino acids, and encode nuclear localized proteins. Finally, we identify ribosome pause sites that are resolved or induced by the depletion of CNOT1. Conclusions We define the key mRNA features that determine how the human Ccr4-Not complex differentially regulates mRNA fate and protein synthesis through a mechanism linked to codon composition, amino acid usage, and mRNA localization.


BMC Genomics ◽  
2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Mikko Arvas ◽  
Tiina Pakula ◽  
Bart Smit ◽  
Jari Rautio ◽  
Heini Koivistoinen ◽  
...  

2021 ◽  
Author(s):  
Sarah L Gillen ◽  
Kelly Hodge ◽  
Sara Zanivan ◽  
Martin Bushell ◽  
Ania Wilczynska

Background: Regulation of protein output at the level of translation allows for a rapid adaptation to dynamic changes to the cell's requirements. This precise control of gene expression is achieved by complex and interlinked biochemical processes that modulate both the protein synthesis rate and stability of each individual mRNA. A major factor coordinating this regulation is the Ccr4-Not complex. Despite playing a role in most stages of the mRNA life cycle, no attempt has been made to take a global integrated view of how the Ccr4-Not complex affects gene expression. Results: This study has taken a holistic approach to investigate post-transcriptional regulation mediated by the Ccr4-Not complex assessing steady-state mRNA levels, ribosome position, mRNA stability and protein production transcriptome-wide. Depletion of the scaffold protein CNOT1 results in a global upregulation of mRNA stability and the preferential stabilisation of mRNAs enriched for GC-ending codons. We also uncover that mRNAs targeted to the ER for their translation have reduced translational efficiency when CNOT1 is depleted, specifically downstream of the signal sequence cleavage site. In contrast, translationally upregulated mRNAs are normally localised in p-bodies, contain disorder-promoting amino acids and encode nuclear localised proteins. Finally, using the unique complement of pulsed SILAC and ribosome profiling data we identify specific mRNAs with ribosome pause sites that are resolved following CNOT1 depletion. Conclusion: We define the key mRNA features that determine how the human Ccr4-Not complex differentially regulates mRNA fate and protein synthesis through a mechanism linked to codon composition, amino acid usage, and mRNA localisation.


2014 ◽  
Vol 11 (100) ◽  
pp. 20140713 ◽  
Author(s):  
Gilad Poker ◽  
Yoram Zarai ◽  
Michael Margaliot ◽  
Tamir Tuller

Translation is an important stage in gene expression. During this stage, macro-molecules called ribosomes travel along the mRNA strand linking amino acids together in a specific order to create a functioning protein. An important question, related to many biomedical disciplines, is how to maximize protein production. Indeed, translation is known to be one of the most energy-consuming processes in the cell, and it is natural to assume that evolution shaped this process so that it maximizes the protein production rate. If this is indeed so then one can estimate various parameters of the translation machinery by solving an appropriate mathematical optimization problem. The same problem also arises in the context of synthetic biology, namely, re-engineer heterologous genes in order to maximize their translation rate in a host organism. We consider the problem of maximizing the protein production rate using a computational model for translation–elongation called the ribosome flow model (RFM). This model describes the flow of the ribosomes along an mRNA chain of length n using a set of n first-order nonlinear ordinary differential equations. It also includes n + 1 positive parameters: the ribosomal initiation rate into the mRNA chain, and n elongation rates along the chain sites. We show that the steady-state translation rate in the RFM is a strictly concave function of its parameters. This means that the problem of maximizing the translation rate under a suitable constraint always admits a unique solution, and that this solution can be determined using highly efficient algorithms for solving convex optimization problems even for large values of n . Furthermore, our analysis shows that the optimal translation rate can be computed based only on the optimal initiation rate and the elongation rate of the codons near the beginning of the ORF. We discuss some applications of the theoretical results to synthetic biology, molecular evolution, and functional genomics.


2017 ◽  
Vol 14 (135) ◽  
pp. 20170128 ◽  
Author(s):  
Yoram Zarai ◽  
Michael Margaliot ◽  
Tamir Tuller

We study a deterministic mechanistic model for the flow of ribosomes along the mRNA molecule, called the ribosome flow model with extended objects  (RFMEO). This model encapsulates many realistic features of translation including non-homogeneous transition rates along mRNA, the fact that every ribosome covers several codons, and the fact that ribosomes cannot overtake one another. The RFMEO is a mean-field approximation of an important model from statistical mechanics called the totally asymmetric simple exclusion process with extended objects (TASEPEO). We demonstrate that the RFMEO describes biophysical aspects of translation better than previous mean-field approximations, and that its predictions correlate well with those of TASEPEO. However, unlike TASEPEO, the RFMEO is amenable to rigorous analysis using tools from systems and control theory. We show that the ribosome density profile along the mRNA in the RFMEO converges to a unique steady-state density that depends on the length of the mRNA, the transition rates along it, and the number of codons covered by every ribosome, but not on the initial density of ribosomes along the mRNA. In particular, the protein production rate also converges to a unique steady state. Furthermore, if the transition rates along the mRNA are periodic with a common period  T then the ribosome density along the mRNA and the protein production rate converge to a unique periodic pattern with period  T , that is, the model entrains to periodic excitations in the transition rates. Analysis and simulations of the RFMEO demonstrate several counterintuitive results. For example, increasing the ribosome footprint may sometimes lead to an increase in the production rate. Also, for large values of the footprint the steady-state density along the mRNA may be quite complex (e.g. with quasi-periodic patterns) even for relatively simple (and non-periodic) transition rates along the mRNA. This implies that inferring the transition rates from the ribosome density may be non-trivial. We believe that the RFMEO could be useful for modelling, understanding and re-engineering translation as well as other important biological processes.


2016 ◽  
Author(s):  
Daniel A. Pollard ◽  
Ciara K. Asamoto ◽  
Homa Rahnamoun ◽  
Austin S. Abendroth ◽  
Suzanne R. Lee ◽  
...  

ABSTRACTHeritable variation in gene expression patterns plays a fundamental role in trait variation and evolution, making understanding the mechanisms by which genetic variation acts on gene expression patterns a major goal for biology. Both theoretical and empirical work have largely focused on variation in steady-state mRNA levels and mRNA synthesis rates, particularly of protein-coding genes. Yet in order for this variation to affect higher order traits it must lead to differences at the protein level. Variation in protein-specific processes including protein synthesis rates and protein decay rates could amplify, mask, or even reverse effects transmitted from the transcript level, but the extent to which this happens is unclear. Moreover, mechanisms that underlie protein expression variation under dynamic conditions have not been examined. To address this challenge, we analyzed how mRNA and protein expression dynamics covary between two strains ofSaccharomyces cerevisiaeduring mating pheromone response. Although divergentsteady-statemRNA expression levels explained divergentsteady-stateprotein levels for four out of five genes in our study, the same was true for only one out of five genes for expressiondynamics. By integrating decay rate and allele-specific protein expression analyses, we resolved that expression divergence for Fig1p was caused by genetic variation acting intranson protein synthesis rate, expression divergence for Ina1p was caused bycis-by-transepistatic effects on transcript level and protein synthesis rate, and expression divergence for Fus3p and Tos6p were caused by divergence in protein synthesis rates. Our study demonstrates that steady-state analysis of gene expression is insufficient to understand the impact of genetic variation on gene expression variation. An integrated and dynamic approach to gene expression analysis - comparing mRNA levels, protein levels, protein decay rates, and allele-specific protein expression - allows for a detailed analysis of the genetic mechanisms underlying protein expression divergences.


2018 ◽  
Author(s):  
Sophia Hsin-Jung Li ◽  
Zhiyuan Li ◽  
Junyoung O. Park ◽  
Christopher G. King ◽  
Joshua D. Rabinowitz ◽  
...  

AbstractFor cells to grow faster they must increase their protein production rate. Microorganisms have traditionally been thought to accomplish this increase by producing more ribosomes to enhance protein synthesis capacity, leading to the linear relationship between ribosome level and growth rate observed under most growth conditions previously examined. Past studies have suggested that this linear relationship represents an optimal resource allocation strategy for each growth rate, independent of any specific nutrient state. Here we investigate protein production strategies in continuous cultures limited for carbon, nitrogen, and phosphate, which differentially impact substrate supply for protein versus nucleic acid metabolism. Unexpectedly, we find that at slow growth rates,E. coliachieves the same protein production rate using three different strategies under the three different nutrient limitations. Upon phosphate (P) limitation, translation is slow due to a particularly low abundance of ribosomes, which are RNA-rich and thus particularly costly for phosphorous-limited cells. In nitrogen (N) limitation, translation is slowed by limited glutamine and stalling at glutamine codons, resulting is slow elongation. In carbon (C) limitation, translation is slowed by accumulation of inactive ribosomes not bound to mRNA. These extra ribosomes enable rapid growth acceleration upon nutrient upshift. Thus, bacteria tune ribosome usage across different limiting nutrients to enable balanced nutrient-limited growth while also preparing for future nutrient upshifts.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hossein Alishah Aratboni ◽  
Nahid Rafiei ◽  
Larousse Khosravi Khorashad ◽  
Albert Isaac Lerma-Escalera ◽  
Francisco de Jesús Balderas-Cisneros ◽  
...  

Abstract Background Within the last decade, genetic engineering and synthetic biology have revolutionized society´s ability to mass-produce complex biological products within genetically-modified microorganisms containing elegantly designed genetic circuitry. However, many challenges still exist in developing bioproduction processes involving genetically modified microorganisms with complex or multiple gene circuits. These challenges include the development of external gene expression regulation methods with the following characteristics: spatial–temporal control and scalability, while inducing minimal permanent or irreversible system-wide conditions. Different stimuli have been used to control gene expression and mitigate these challenges, and they can be characterized by the effect they produce in the culture media conditions. Invasive stimuli that cause permanent, irreversible changes (pH and chemical inducers), non-invasive stimuli that cause partially reversible changes (temperature), and non-invasive stimuli that cause reversible changes in the media conditions (ultrasound, magnetic fields, and light). Methods Opto-control of gene expression is a non-invasive external trigger that complies with most of the desired characteristics of an external control system. However, the disadvantage relies on the design of the biological photoreceptors and the necessity to design them to respond to a different wavelength for every bioprocess needed to be controlled or regulated in the microorganism. Therefore, this work proposes using biocompatible metallic nanoparticles as external controllers of gene expression, based on their ability to convert light into heat and the capacity of nanotechnology to easily design a wide array of nanostructures capable of absorbing light at different wavelengths and inducing plasmonic photothermal heating. Results Here, we designed a nanobiosystem that can be opto-thermally triggered using LED light. The nanobiosystem is composed of biocompatible gold nanoparticles and a genetically modified E. coli with a plasmid that allows mCherry fluorescent protein production at 37 °C in response to an RNA thermometer. Conclusions The LED-triggered photothermal protein production system here designed offers a new, cheaper, scalable switchable method, non-destructive for living organisms, and contribute toward the evolution of bioprocess production systems.


2018 ◽  
Vol 120 (12) ◽  
Author(s):  
Juraj Szavits-Nossan ◽  
Luca Ciandrini ◽  
M. Carmen Romano

Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1232
Author(s):  
Maria A. Duk ◽  
Vitaly V. Gursky ◽  
Maria G. Samsonova ◽  
Svetlana Yu. Surkova

Unlike transcriptional regulation, the post-transcriptional mechanisms underlying zygotic segmentation gene expression in early Drosophila embryo have been insufficiently investigated. Condition-specific post-transcriptional regulation plays an important role in the development of many organisms. Our recent study revealed the domain- and genotype-specific differences between mRNA and the protein expression of Drosophila hb, gt, and eve genes in cleavage cycle 14A. Here, we use this dataset and the dynamic mathematical model to recapitulate protein expression from the corresponding mRNA patterns. The condition-specific nonuniformity in parameter values is further interpreted in terms of possible post-transcriptional modifications. For hb expression in wild-type embryos, our results predict the position-specific differences in protein production. The protein synthesis rate parameter is significantly higher in hb anterior domain compared to the posterior domain. The parameter sets describing Gt protein dynamics in wild-type embryos and Kr mutants are genotype-specific. The spatial discrepancy between gt mRNA and protein posterior expression in Kr mutants is well reproduced by the whole axis model, thus rejecting the involvement of post-transcriptional mechanisms. Our models fail to describe the full dynamics of eve expression, presumably due to its complex shape and the variable time delays between mRNA and protein patterns, which likely require a more complex model. Overall, our modeling approach enables the prediction of regulatory scenarios underlying the condition-specific differences between mRNA and protein expression in early embryo.


Sign in / Sign up

Export Citation Format

Share Document