scholarly journals Shuttling and sorting lipid-modified cargo into the cilia

2016 ◽  
Vol 44 (5) ◽  
pp. 1273-1280 ◽  
Author(s):  
Louise A. Stephen ◽  
Shehab Ismail

Primary cilia are hair-like microtubule-based organelles that can be found on almost all human cell types. Although the cilium is not separated from the cell by membranes, their content is different from that of the cell body and their membrane composition is distinct from that of the plasma membrane. Here, we will introduce a molecular machinery that shuttles and sorts lipid-modified proteins to the cilium, thus contributing in maintaining its distinct composition. The mechanism involves the binding of the GDI-like solubilising factors, uncoordinated (UNC)119a, UNC119b and PDE6D, to the lipid-modified ciliary cargo and the specific release of the cargo in the cilia by the ciliary small G-protein Arl3 in a GTP-dependent manner.


2011 ◽  
Vol 301 (1) ◽  
pp. E113-E121 ◽  
Author(s):  
Joshua P. Gray ◽  
Timothy Eisen ◽  
Gary W. Cline ◽  
Peter J. S. Smith ◽  
Emma Heart

Plasma membrane electron transport (PMET), a cytosolic/plasma membrane analog of mitochondrial electron transport, is a ubiquitous system of cytosolic and plasma membrane oxidoreductases that oxidizes cytosolic NADH and NADPH and passes electrons to extracellular targets. While PMET has been shown to play an important role in a variety of cell types, no studies exist to evaluate its function in insulin-secreting cells. Here we demonstrate the presence of robust PMET activity in primary islets and clonal β-cells, as assessed by the reduction of the plasma membrane-impermeable dyes WST-1 and ferricyanide. Because the degree of metabolic function of β-cells (reflected by the level of insulin output) increases in a glucose-dependent manner between 4 and 10 mM glucose, PMET was evaluated under these conditions. PMET activity was present at 4 mM glucose and was further stimulated at 10 mM glucose. PMET activity at 10 mM glucose was inhibited by the application of the flavoprotein inhibitor diphenylene iodonium and various antioxidants. Overexpression of cytosolic NAD(P)H-quinone oxidoreductase (NQO1) increased PMET activity in the presence of 10 mM glucose while inhibition of NQO1 by its inhibitor dicoumarol abolished this activity. Mitochondrial inhibitors rotenone, antimycin A, and potassium cyanide elevated PMET activity. Regardless of glucose levels, PMET activity was greatly enhanced by the application of aminooxyacetate, an inhibitor of the malate-aspartate shuttle. We propose a model for the role of PMET as a regulator of glycolytic flux and an important component of the metabolic machinery in β-cells.



1989 ◽  
Vol 256 (1) ◽  
pp. F1-F12 ◽  
Author(s):  
D. Brown

The plasma membrane composition of virtually all eucaryotic cells is established, maintained, and modified by the process of membrane recycling. Specific plasma membrane components are inserted by exocytosis of transport vesicles, and are removed by endocytosis of segments of the membrane in which particular proteins are concentrated. In the kidney collecting duct, vasopressin induces the cycling of vesicles that are thought to carry water channels to and from the apical plasma membrane of principal cells, thus modulating the water permeability of this membrane. In the intercalated cells of the collecting duct, hydrogen ion secretion is controlled by the recycling of vesicles carrying proton pumps to and from the plasma membrane. In both cell types, "coated" carrier vesicles are involved, but whereas clathrin-coated vesicles participate in water channel recycling, the vesicles in intercalated cells are coated with the cytoplasmic domains of proton pumps. Following a brief outline of membrane recycling in general, this review summarizes previous data on membrane recycling in the collecting duct and related transporting epithelia and discusses some selected points relating to the role of membrane recycling and cell-specific function in the collecting duct.



2018 ◽  
Author(s):  
Thomas D. Williams ◽  
Sew-Yeu Peak-Chew ◽  
Peggy Paschke ◽  
Robert R. Kay

AbstractMacropinocytosis is an actin-driven process of large-scale, non-specific fluid uptake used for feeding by some cancer cells and the macropinocytosis model organism Dictyostelium discoideum. In Dictyostelium, macropinocytic cups are organised by ‘macropinocytic patches’ in the plasma membrane. These contain activated Ras, Rac and PI(3,4,5)P3 and direct actin polymerisation to their periphery. Here, we show that a classical (PkbA) and a variant (PkbR1) Akt protein kinase acting downstream of PI(3,4,5)P3 are together are near-essential for fluid uptake. This pathway enables the formation of larger macropinocytic patches and macropinosomes, thereby dramatically increasing fluid uptake. Akt targets identified by phosphoproteomics were highly enriched in small G-protein regulators, including the RhoGAP GacG. GacG knockout mutants make few macropinosomes but instead redeploy their cytoskeleton from macropinocytosis to motility, moving rapidly but taking up little fluid. The function of Akt in cell feeding through control of macropinosome size has implications for cancer cell biology.Summary statementDictyostelium amoebae feed by macropinocytosis in a PIP3 dependent manner. In the absence of PI3-kinases or the downstream Akt protein kinases, cells have smaller macropinosomes and nearly abolished fluid uptake.



1989 ◽  
Vol 108 (5) ◽  
pp. 1697-1709 ◽  
Author(s):  
T C Pesacreta ◽  
T J Byers ◽  
R Dubreuil ◽  
D P Kiehart ◽  
D Branton

The distribution of alpha-spectrin in Drosophila embryos was determined by immunofluorescence using affinity-purified polyclonal or monoclonal antibodies. During early development, spectrin is concentrated near the inner surface of the plasma membrane, in cytoplasmic islands around the syncytial nuclei, and, at lower concentrations, throughout the remainder of the cytoplasm of preblastoderm embryos. As embryogenesis proceeds, the distribution of spectrin shifts with the migrating nuclei toward the embryo surface so that, by nuclear cycle 9, a larger proportion of the spectrin is concentrated near the plasma membrane. During nuclear cycles 9 and 10, as the nuclei reach the cell surface, the plasma membrane-associated spectrin becomes concentrated into caps above the somatic nuclei. Concurrent with the mitotic events of the syncytial blastoderm period, the spectrin caps elongate at interphase and prophase, and divide as metaphase and anaphase progress. During cellularization, the regions of spectrin concentration appear to shift: spectrin increases near the growing furrow canal and concomitantly increases at the embryo surface. In the final phase of furrow growth, the shift in spectrin concentration is reversed: spectrin decreases near the furrow canal and concomitantly increases at the embryo surface. In gastrulae, spectrin accumulates near the embryo surface, especially at the forming amnioproctodeal invagination and cephalic furrow. During the germband elongation stage, the total amount of spectrin in the embryo increases significantly and becomes uniformly distributed at the plasma membrane of almost all cell types. The highest levels of spectrin are in the respiratory tract cells; the lowest levels are in parts of the forming gut. The spatial and temporal changes in spectrin localization suggest that this protein plays a role in stabilizing rather than initiating changes in structural organization in the embryo.



2011 ◽  
Vol 22 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Felipe O. Bendezú ◽  
Sophie G. Martin

Cell morphogenesis depends on polarized exocytosis. One widely held model posits that long-range transport and exocyst-dependent tethering of exocytic vesicles at the plasma membrane sequentially drive this process. Here, we describe that disruption of either actin-based long-range transport and microtubules or the exocyst did not abolish polarized growth in rod-shaped fission yeast cells. However, disruption of both actin cables and exocyst led to isotropic growth. Exocytic vesicles localized to cell tips in single mutants but were dispersed in double mutants. In contrast, a marker for active Cdc42, a major polarity landmark, localized to discreet cortical sites even in double mutants. Localization and photobleaching studies show that the exocyst subunits Sec6 and Sec8 localize to cell tips largely independently of the actin cytoskeleton, but in a cdc42 and phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2)–dependent manner. Thus in fission yeast long-range cytoskeletal transport and PIP2-dependent exocyst represent parallel morphogenetic modules downstream of Cdc42, raising the possibility of similar mechanisms in other cell types.



2004 ◽  
Vol 166 (6) ◽  
pp. 815-825 ◽  
Author(s):  
Daniele Zink ◽  
Margarida D. Amaral ◽  
Andreas Englmann ◽  
Susanne Lang ◽  
Luka A. Clarke ◽  
...  

We investigated in different human cell types nuclear positioning and transcriptional regulation of the functionally unrelated genes GASZ, CFTR, and CORTBP2, mapping to adjacent loci on human chromosome 7q31. When inactive, GASZ, CFTR, and CORTBP2 preferentially associated with the nuclear periphery and with perinuclear heterochromatin, whereas in their actively transcribed states the gene loci preferentially associated with euchromatin in the nuclear interior. Adjacent genes associated simultaneously with these distinct chromatin fractions localizing at different nuclear regions, in accordance with their individual transcriptional regulation. Although the nuclear localization of CFTR changed after altering its transcription levels, the transcriptional status of CFTR was not changed by driving this gene into a different nuclear environment. This implied that the transcriptional activity affected the nuclear positioning, and not vice versa. Together, the results show that small chromosomal subregions can display highly flexible nuclear organizations that are regulated at the level of individual genes in a transcription-dependent manner.



2021 ◽  
Author(s):  
Ivanna Williantarra ◽  
Sophia Leung ◽  
Yu Suk Choi ◽  
Ashika Chhana ◽  
Susan R McGlashan

Mechanical stress and the stiffness of the extracellular matrix are key drivers of tissue development and homeostasis. Aberrant mechanosensation is associated with a wide range of pathologies, including diseases such as osteoarthritis. Substrate stiffness is one of the well-known mechanical properties of the matrix that enabled establishing the central dogma of an integrin-mediated mechanotransduction using stem cells. However, how specific cells 'feel' or sense substrate stiffness requires further study. The primary cilium is an essential cellular organelle that senses and integrates mechanical and chemical signals from the extracellular environment. We hypothesised that the primary cilium dynamically alters its length and position to fine-tune cell mechanosignalling based on substrate stiffness alone. We used a hydrogel system of varying substrate stiffness to examine the role of substrate stiffness on cilia frequency, length and centriole position as well as cell and nuclei area over time. Contrary to other cell types, we show that chondrocyte primary cilia shorten on softer substrates demonstrating tissue-specific mechanosensing which is aligned with the tissue stiffness the cells originate from. We further show that stiffness alone determine centriole positioning to either the basal or apical membranes during attachment and spreading, with centriole positioned towards the basal membrane on stiffer substrates. These phenomena are mediated by force generation actin-myosin stress fibres in a time-dependent manner. Based on these findings, we propose that substrate stiffness plays a central role in cilia positioning, regulating cellular response to external forces, and may be a key driver of mechanosignalling-associated diseases.



Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 905 ◽  
Author(s):  
Morleo ◽  
Franco

Primary cilia are microtubule-based organelles protruding from the surface of almost all vertebrate cells. This organelle represents the cell’s antenna which acts as a communication hub to transfer extracellular signals into intracellular responses during development and in tissue homeostasis. Recently, it has been shown that loss of cilia negatively regulates autophagy, the main catabolic route of the cell, probably utilizing the autophagic machinery localized at the peri-ciliary compartment. On the other side, autophagy influences ciliogenesis in a context-dependent manner, possibly to ensure that the sensing organelle is properly formed in a feedback loop model. In this review we discuss the recent literature and propose that the autophagic machinery and the ciliary proteins are functionally strictly related to control both autophagy and ciliogenesis. Moreover, we report examples of diseases associated with autophagic defects which cause cilia abnormalities, and propose and discuss the hypothesis that, at least some of the clinical manifestations observed in human diseases associated to ciliary disfunction may be the result of a perturbed autophagy.



2017 ◽  
Vol 28 (1) ◽  
pp. 210-220 ◽  
Author(s):  
Armin Haupt ◽  
Nicolas Minc

Surface charges at the inner leaflet of the plasma membrane may contribute to regulate the surface recruitment of key signaling factors. Phosphatidylserine (PS) is an abundant charged lipid that may regulate charge distribution in different cell types. Here we characterize the subcellular distribution and function of PS in the rod-shaped, polarized fission yeast. We find that PS preferably accumulates at cell tips and defines a gradient of negative charges along the cell surface. This polarization depends on actin-mediated endocytosis and contributes to the subcellular partitioning of charged polarity-regulating Rho GTPases like Rho1 or Cdc42 in a protein charge–dependent manner. Cells depleted of PS have altered cell dimensions and fail to properly regulate growth from the second end, suggesting a role for PS and membrane charge in polarized cell growth.



2019 ◽  
Vol 60 (5) ◽  
pp. 995-1004 ◽  
Author(s):  
Mario Ruiz ◽  
Marcus Ståhlman ◽  
Jan Borén ◽  
Marc Pilon

The FA composition of phospholipids must be tightly regulated to maintain optimal cell membrane properties and compensate for a highly variable supply of dietary FAs. Previous studies have shown that AdipoR2 and its homologue PAQR-2 are important regulators of phospholipid FA composition in HEK293 cells and Caenorhabditiselegans, respectively. Here we show that both AdipoR1 and AdipoR2 are essential for sustaining desaturase expression and high levels of unsaturated FAs in membrane phospholipids of many human cell types, including primary human umbilical vein endothelial cells, and for preventing membrane rigidification in cells challenged with exogenous palmitate, a saturated FA. Three independent methods confirm the role of the AdipoRs as regulators of membrane composition and fluidity: fluorescence recovery after photobleaching, measurements of Laurdan dye generalized polarization, and mass spectrometry to determine the FA composition of phospholipids. Furthermore, we show that the AdipoRs can prevent lipotoxicity in the complete absence of adiponectin, their putative ligand. We propose that the primary cellular function of AdipoR1 and AdipoR2 is to maintain membrane fluidity in most human cell types and that adiponectin is not required for this function.



Sign in / Sign up

Export Citation Format

Share Document