scholarly journals Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei

2004 ◽  
Vol 166 (6) ◽  
pp. 815-825 ◽  
Author(s):  
Daniele Zink ◽  
Margarida D. Amaral ◽  
Andreas Englmann ◽  
Susanne Lang ◽  
Luka A. Clarke ◽  
...  

We investigated in different human cell types nuclear positioning and transcriptional regulation of the functionally unrelated genes GASZ, CFTR, and CORTBP2, mapping to adjacent loci on human chromosome 7q31. When inactive, GASZ, CFTR, and CORTBP2 preferentially associated with the nuclear periphery and with perinuclear heterochromatin, whereas in their actively transcribed states the gene loci preferentially associated with euchromatin in the nuclear interior. Adjacent genes associated simultaneously with these distinct chromatin fractions localizing at different nuclear regions, in accordance with their individual transcriptional regulation. Although the nuclear localization of CFTR changed after altering its transcription levels, the transcriptional status of CFTR was not changed by driving this gene into a different nuclear environment. This implied that the transcriptional activity affected the nuclear positioning, and not vice versa. Together, the results show that small chromosomal subregions can display highly flexible nuclear organizations that are regulated at the level of individual genes in a transcription-dependent manner.

2016 ◽  
Vol 44 (5) ◽  
pp. 1273-1280 ◽  
Author(s):  
Louise A. Stephen ◽  
Shehab Ismail

Primary cilia are hair-like microtubule-based organelles that can be found on almost all human cell types. Although the cilium is not separated from the cell by membranes, their content is different from that of the cell body and their membrane composition is distinct from that of the plasma membrane. Here, we will introduce a molecular machinery that shuttles and sorts lipid-modified proteins to the cilium, thus contributing in maintaining its distinct composition. The mechanism involves the binding of the GDI-like solubilising factors, uncoordinated (UNC)119a, UNC119b and PDE6D, to the lipid-modified ciliary cargo and the specific release of the cargo in the cilia by the ciliary small G-protein Arl3 in a GTP-dependent manner.


2005 ◽  
Vol 289 (3) ◽  
pp. G471-G477 ◽  
Author(s):  
Jin Shimakura ◽  
Tomohiro Terada ◽  
Toshiya Katsura ◽  
Ken-Ichi Inui

H+-coupled peptide transporter 1 (PEPT1, SLC15A1) localized at the brush-border membranes of intestinal epithelial cells plays an important role in the intestinal absorption of small peptides and a variety of peptidemimetic drugs. PEPT1 is regulated by various factors, including hormones, dietary conditions, some pharmaceutics, and diurnal rhythm. But there is little information about the transcriptional regulation of PEPT1. In the present study, therefore, we cloned the human (h)PEPT1 promoter region and examined its promoter activity using a human intestinal cell line, Caco-2. Deletion analysis of the hPEPT1 promoter suggested that the region spanning −172 to −35 bp was essential for basal transcriptional activity. This region lacked a TATA-box but contained some GC-rich sites that supposedly bind with the transcription factor Sp1. Mutational analysis revealed that three of these putative Sp1 sites contributed to the transcriptional activity. EMSA showed that Sp1 bound to two GC-rich sites. Furthermore, inhibition of Sp1 binding by mithramycin A treatment significantly reduced the transcriptional activity. Finally, overexpression of Sp1 increased the transcriptional activity in a dose-dependent manner. This study reports the first characterization of the hPEPT1 promoter and shows the significant role of Sp1 in the basal transcriptional regulation of hPEPT1.


2020 ◽  
Author(s):  
Kathleen C. Keough ◽  
Parisha P. Shah ◽  
Nadeera M. Wickramasinghe ◽  
Carolyn E. Dundes ◽  
Angela Chen ◽  
...  

AbstractThree-dimensional genome organization, specifically organization of heterochromatin at the nuclear periphery, coordinates cell type-specific gene regulation. While defining various histone modifications and chromatin-associated proteins in multiple cell types has provided important insights into epigenetic regulation of gene expression and cellular identity, peripheral heterochromatin has not been mapped comprehensively and relatively few examples have emerged detailing the role of peripheral heterochromatin in cellular identity, cell fate choices, and/or organogenesis. In this study, we define nuclear peripheral heterochromatin organization signatures based on association with LAMIN B1 and/or dimethylation of lysine 9 on H3 (H3K9me2) across thirteen human cell types encompassing pluripotent stem cells, intermediate progenitors and differentiated cells from all three germ layers. Genomic analyses across this atlas reveal that lamin-associated chromatin is organized into at least two different compartments, defined by differences in genome coverage, chromatin accessibility, residence of transposable elements, replication timing domains, and gene complements. Our datasets reveal that only a small subset of lamin-associated chromatin domains are cell type invariant, underscoring the complexity of peripheral heterochromatin organization. Moreover, by integrating peripheral chromatin maps with transcriptional data, we find evidence of cooperative shifts between chromatin structure and gene expression associated with each cell type. This atlas of peripheral chromatin provides the largest resource to date for peripheral chromatin organization and a deeper appreciation for how this organization may impact the establishment and maintenance of cellular identity.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 136 ◽  
Author(s):  
Brian Burke

Nuclear positioning plays an essential role in defining cell architecture and behaviour in both development and disease, and nuclear location frequently adjusts according to internal and external cues. For instance, during periods of migration in many cell types, the nucleus may be actively repositioned behind the microtubule-organising centre. Nuclear movement, for the most part, is dependent upon coupling of the cytoskeleton to the nuclear periphery. This is accomplished largely through SUN and KASH domain proteins, which together assemble to form LINC (linker of the nucleoskeleton and cytoskeleton) complexes spanning the nuclear envelope. SUN proteins of the inner nuclear membrane provide a connection to nuclear structures while acting as a tether for outer nuclear membrane KASH proteins. The latter contain binding sites for diverse cytoskeletal components. Recent publications highlight new aspects of LINC complex regulation revealing that the interplay between SUN and KASH partners can strongly influence how the nucleus functionally engages with different branches of the cytoskeleton.


2014 ◽  
Vol 84 (1-2) ◽  
pp. 79-91 ◽  
Author(s):  
Amin F. Majdalawieh ◽  
Hyo-Sung Ro

Background: Foam cell formation resulting from disrupted macrophage cholesterol efflux, which is triggered by PPARγ1 and LXRα, is a hallmark of atherosclerosis. Sesamin and sesame oil exert anti-atherogenic effects in vivo. However, the exact molecular mechanisms underlying such effects are not fully understood. Aim: This study examines the potential effects of sesamin (0, 25, 50, 75, 100 μM) on PPARγ1 and LXRα expression and transcriptional activity as well as macrophage cholesterol efflux. Methods: PPARγ1 and LXRα expression and transcriptional activity are assessed by luciferase reporter assays. Macrophage cholesterol efflux is evaluated by ApoAI-specific cholesterol efflux assays. Results: The 50 μM, 75 μM, and 100 μM concentrations of sesamin up-regulated the expression of PPARγ1 (p< 0.001, p < 0.001, p < 0.001, respectively) and LXRα (p = 0.002, p < 0.001, p < 0.001, respectively) in a concentration-dependent manner. Moreover, 75 μM and 100 μM concentrations of sesamin led to 5.2-fold (p < 0.001) and 6.0-fold (p<0.001) increases in PPAR transcriptional activity and 3.9-fold (p< 0.001) and 4.2-fold (p < 0.001) increases in LXR transcriptional activity, respectively, in a concentration- and time-dependent manner via MAPK signaling. Consistently, 50 μM, 75 μM, and 100 μM concentrations of sesamin improved macrophage cholesterol efflux by 2.7-fold (p < 0.001), 4.2-fold (p < 0.001), and 4.2-fold (p < 0.001), respectively, via MAPK signaling. Conclusion: Our findings shed light on the molecular mechanism(s) underlying sesamin’s anti-atherogenic effects, which seem to be due, at least in part, to its ability to up-regulate PPARγ1 and LXRα expression and transcriptional activity, improving macrophage cholesterol efflux. We anticipate that sesamin may be used as a therapeutic agent for treating atherosclerosis.


2004 ◽  
Vol 286 (5) ◽  
pp. C1109-C1117 ◽  
Author(s):  
Liang Guo ◽  
Dawn Pietkiewicz ◽  
Evgeny V. Pavlov ◽  
Sergey M. Grigoriev ◽  
John J. Kasianowicz ◽  
...  

Recent studies indicate that cytochrome c is released early in apoptosis without loss of integrity of the mitochondrial outer membrane in some cell types. The high-conductance mitochondrial apoptosis-induced channel (MAC) forms in the outer membrane early in apoptosis of FL5.12 cells. Physiological (micromolar) levels of cytochrome c alter MAC activity, and these effects are referred to as types 1 and 2. Type 1 effects are consistent with a partitioning of cytochrome c into the pore of MAC and include a modest decrease in conductance that is dose and voltage dependent, reversible, and has an increase in noise. Type 2 effects may correspond to “plugging” of the pore or destabilization of the open state. Type 2 effects are a dose-dependent, voltage-independent, and irreversible decrease in conductance. MAC is a heterogeneous channel with variable conductance. Cytochrome c affects MAC in a pore size-dependent manner, with maximal effects of cytochrome c on MAC with conductance of 1.9–5.4 nS. The effects of cytochrome c, RNase A, and high salt on MAC indicate that size, rather than charge, is crucial. The effects of dextran molecules of various sizes indicate that the pore diameter of MAC is slightly larger than that of 17-kDa dextran, which should be sufficient to allow the passage of 12-kDa cytochrome c. These findings are consistent with the notion that MAC is the pore through which cytochrome c is released from mitochondria during apoptosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Mariano Amabis ◽  
Eduardo Gorab

AbstractMicronucleoli are among the structures composing the peculiar scenario of the nucleolus in salivary gland nuclei of dipterans representative of Sciaridae. Micronucleolar bodies contain ribosomal DNA and RNA, are transcriptionally active and may appear free in the nucleoplasm or associated with specific chromosome regions in salivary gland nuclei. This report deals with an extreme case of nucleolar fragmentation/dispersion detected in the salivary gland of Schwenkfeldina sp. Such a phenomenon in this species was found to be restricted to cell types undergoing polyteny and seems to be differentially controlled according to the cell type. Furthermore, transcriptional activity was detected in virtually all the micronucleolar bodies generated in the salivary gland. The relative proportion of the rDNA in polytene and diploid tissues showed that rDNA under-replication did not occur in polytene nuclei suggesting that the nucleolar and concomitant rDNA dispersion in Schwenkfeldina sp. may reflect a previously hypothesised process in order to counterbalance the rDNA loss due to the under-replication. The chromosomal distribution of epigenetic markers for the heterochromatin agreed with early cytological observations in this species suggesting that heterochromatin is spread throughout the chromosome length of Schwenkfeldina sp. A comparison made with results from another sciarid species argues for a role played by the heterochromatin in the establishment of the rDNA topology in polytene nuclei of Sciaridae.


2006 ◽  
Vol 26 (4) ◽  
pp. 1347-1354 ◽  
Author(s):  
Ruishan Wang ◽  
Yun-wu Zhang ◽  
Ping Sun ◽  
Runzhong Liu ◽  
Xian Zhang ◽  
...  

ABSTRACT Gamma-secretase, which is responsible for the intramembranous cleavage of Alzheimer's β-amyloid precursor protein (APP), the signaling receptor Notch, and many other substrates, is a multiprotein complex consisting of at least four components: presenilin (PS), nicastrin, APH-1, and PEN-2. Despite the fact that PEN-2 is known to mediate endoproteolytic cleavage of full-length PS and APH-1 and nicastrin are required for maintaining the stability of the complex, the detailed physiological function of each component remain elusive. Unlike that of PS, the transcriptional regulation of PEN-2, APH-1, and nicastrin has not been investigated. Here, we characterized the upstream regions of the human PEN-2 gene and identified a 238-bp fragment located 353 bp upstream of the translational start codon as the key region necessary for the promoter activity. Further analysis revealed a CREB binding site located in the 238-bp region that is essential for the transcriptional activity of the PEN-2 promoter. Mutation of the CREB site abolished the transcriptional activity of the PEN-2 promoter. Electrophoretic mobility shift assays and chromatin immunoprecipitation analysis showed the binding of CREB to the PEN-2 promoter region both in vitro and in vivo. Activation of the CREB transcriptional factor by forskolin dramatically promoted the expression of PEN-2 mRNA and protein, whereas the other components of the γ-secretase complex remained unaffected. Forskolin treatment slightly increases the secretion of soluble APPα and Aβ without affecting Notch cleavage. These results demonstrate that expression of PEN-2 is regulated by CREB and suggest that the specific control of PEN-2 expression may imply additional physiological functions uniquely assigned to PEN-2.


2011 ◽  
Vol 34 (1-2) ◽  
pp. 21-33 ◽  
Author(s):  
Sylvia Timme ◽  
Eberhard Schmitt ◽  
Stefan Stein ◽  
Jutta Schwarz-Finsterle ◽  
Jenny Wagner ◽  
...  

Cell type specific radial positioning of chromosome territories (CTs) and their sub-domains in the interphase seem to have functional relevance in non-neoplastic human nuclei, while much less is known about nuclear architecture in carcinoma cells and its development during tumor progression. We analyzed the 3D-architecture of the chromosome 8 territory (CT8) in carcinoma and corresponding non-neoplastic ductal pancreatic epithelium. Fluorescence-in-situ-hybridization (FISH) with whole chromosome painting (WCP) probes on sections from formalin-fixed, paraffin wax-embedded tissues from six patients with ductal adenocarcinoma of the pancreas was used. Radial positions and shape parameters of CT8 were analyzed by 3D-microscopy. None of the parameters showed significant inter-individual changes. CT8 was localized in the nuclear periphery in carcinoma cells and normal ductal epithelial cells. Normalized volume and surface of CT8 did not differ significantly. In contrast, the normalized roundness was significantly lower in carcinoma cells, implying an elongation of neoplastic cell nuclei. Unexpectedly, radial positioning of CT8, a dominant parameter of nuclear architecture, did not change significantly when comparing neoplastic with non-neoplastic cells. A significant deformation of CT8, however, accompanies nuclear atypia of carcinoma cells. This decreased roundness of CTs may reflect the genomic and transcriptional alterations in carcinoma.


Sign in / Sign up

Export Citation Format

Share Document