Urinary Concentration and Dilution after Unilateral Nephrectomy in the Rat

1975 ◽  
Vol 49 (6) ◽  
pp. 563-572
Author(s):  
D. S. Emmanouel ◽  
M. D. Lindheimer ◽  
A. I. Katz

1. The effects of unilateral nephrectomy on urinary concentration and dilution were studied in Sprague—Dawley rats. To exclude incomplete suppression of antidiuretic hormone, free water formation was also studied in rats with congenital diabetes insipidus (Brattleboro strain). 2. Urinary solute-free water formation was similar in Sprague—Dawley and Brattleboro rats. Unineph-rectomized animals excreted a water load promptly and diluted their urine to the same degree as control rats. Maximal values for Cwater and TCwater per kidney were higher after nephrectomy, but were similar to those of control rats at comparable rates of fluid delivery to the distal nephron. Renal tissue osmolality was similar in uninephrectomized and sham-operated animals, indicating that non-antidiuretic hormone-dependent backflux of filtrate was the same in the two groups. The only defect observed in uninephrectomized animals was a small reduction in maximal urine osmolality. 3. These results demonstrate that free water formation and reabsorption are unaffected by unilateral nephrectomy and suggest that, in the remaining kidney, filtrate reabsorption along the entire nephron increases in proportion to the increment in glomerular filtration.

1977 ◽  
Vol 232 (4) ◽  
pp. F335-F340 ◽  
Author(s):  
J. D. Wallin ◽  
R. A. Kaplan

Mechanisms for the concentrating defect produced by fluoride were examined in the rat. Free-water clearance at all levels of delivery was normal after 5 days of chronic fluoride administration in the hereditary hypothalamic diabetes insipidus rat. In the Sprague-Dawley rats, during moderate fluoride administration (120 micronmol/kg per day), urine osmolality and cyclic AMP excretion decreased and urine volume increased, but after exogenous vasopressin, volume decreased and osmolality and cyclic AMP increased appropriately. During larger daily doses of fluoride (240 micronmol/kg per day) urinary osmolality and cyclic AMP decreased and volume increased, which was similar to the changes seen during lower fluoride dosages, but these parameters did not change after exogenous vasopressin. These data suggest that ascending limb chloride reabsorption is unaltered by fluoride administration; in the presence of sufficient fluoride, collecting tubular cells apparently do not generate cyclic AMP or increase permeability appropriately in response to vasopressin. The postulated defect is felt to be due to either a decrease in ATP availability or to a direct inhibitory effect of fluoride on the vasopressin-dependent cyclic AMP generating system.


1976 ◽  
Vol 230 (6) ◽  
pp. 1524-1530 ◽  
Author(s):  
JD Wallin ◽  
PA Lee

The effect of prolactin on free water clearance (C(H2O)) and reabsorption (T(cH2O)) was assessed in hereditary hypothalamic diabetes insipidus (HHDI) and hydropenic Sprague-Dawley rats. Infusion of ovine prolactin (200 nmol/kg per h) ablated C(H2O) in HHDI rats but had no effect on T(cH2O) in hydropenic rats. Additional experiments in HHDI rats employing submaximal infusions of both ovine and rat prolactin indicated that with increasing infusion rates of these hormones, urine osmolality progressively increased with a maximum effect being reached at 30-40 nmol/kg per h with ovine and 15-20 nmol/kg per h with rat prolactin. In similar experiments, using synthetic lysine-arginine vasopressin, maximum effect on urine osmolality was achieved with an infusion rate of 25-75 pmol/kg per h. During infusion of all three hormones, urinary cyclic AMP excretion increased significantly in a similar fashion. These data suggested that prolactin had a direct effect on collecting tubule permeability and acted through stimulation of cyclic AMP production.


2008 ◽  
Vol 294 (4) ◽  
pp. F702-F709 ◽  
Author(s):  
Gheun-Ho Kim ◽  
Nak Won Choi ◽  
Ju-Young Jung ◽  
Ji-Hyun Song ◽  
Chang Hwa Lee ◽  
...  

Prostaglandin E2 may antagonize vasopressin-stimulated salt absorption in the thick ascending limb and water absorption in the collecting duct. Blockade of prostaglandin E2 synthesis by nonsteroidal anti-inflammatory drugs (NSAIDs) enhances urinary concentration, and these agents have antidiuretic effects in patients with nephrogenic diabetes insipidus (NDI) of different etiologies. Because renal prostaglandins are derived largely from cyclooxygenase-2 (COX-2), we hypothesized that treatment of NDI with a COX-2 inhibitor may relieve polyuria through increased expression of Na-K-2Cl cotransporter type 2 (NKCC2) in the thick ascending limb and aquaporin-2 (AQP2) in the collecting duct. To test this hypothesis, semiquantitative immunoblotting and immunohistochemistry were carried out from the kidneys of lithium-induced NDI rats with and without COX-2 inhibition. After male Sprague-Dawley rats were fed an LiCl-containing rat diet for 3 wk, the rats were randomly divided into control and experimental groups. The COX-2 inhibitor DFU (40 mg·kg−1·day−1) was orally administered to the experimental rats for an additional week. Treatment with the COX-2 inhibitor significantly relieved polyuria and raised urine osmolality. Semiquantitative immunoblotting using whole-kidney homogenates revealed that COX-2 inhibition caused significant increases in the abundance of AQP2 and NKCC2. Immunohistochemistry for AQP2 and NKCC2 confirmed the effects of COX-2 inhibition in lithium-induced NDI rats. The upregulation of AQP2 and NKCC2 in response to the COX-2 inhibitor may underlie the therapeutic mechanisms by which NSAIDs enhance antidiuresis in patients with NDI.


2005 ◽  
Vol 289 (4) ◽  
pp. F672-F678 ◽  
Author(s):  
Yung-Chang Chen ◽  
Melissa A. Cadnapaphornchai ◽  
Jianhui Yang ◽  
Sandra N. Summer ◽  
Sandor Falk ◽  
...  

The purpose of this study was to examine protein expression of renal aquaporins (AQP) and ion transporters in hypothyroid (HT) rats in response to an oral water load compared with controls (CTL) and HT rats replaced with l-thyroxine (HT+T). Hypothyroidism was induced by aminotriazole administration for 10 wk. Body weight, water intake, urine output, solute and urea excretion, and serum and urine osmolality were comparable among the three groups at the conclusion of the 10-wk treatment period. One hour after oral gavage of water (50 ml/kg body wt), HT rats demonstrated significantly less water excretion, higher minimal urinary osmolality, and decreased serum osmolality compared with CTL and HT+T rats. Despite the hyposmolality, plasma vasopressin concentration was elevated in HT rats. These findings in HT rats were associated with an increase in protein abundance of renal cortex AQP1 and inner medulla AQP2. AQP3, AQP4, and the Na-K-2Cl cotransporter were also increased. Moreover, 1 h following the oral water load, HT rats demonstrated a significant increase in the membrane-to-vesicle fraction of AQP2 by Western blot analysis. The defect in urinary dilution in HT rats was reversed by the V2 vasopressin antagonist OPC-31260. In conclusion, impaired urinary dilution in HT rats is primarily compatible with the nonosmotic release of vasopressin and increased protein expression of renal AQP2. The impairment of maximal solute-free water excretion in HT rats, however, appears also to involve diminished distal fluid delivery.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Na Cui ◽  
Hao Wang ◽  
Yun Long ◽  
Longxiang Su ◽  
Dawei Liu

The aim of this study is to determine the mechanism of sepsis-induced vascular hyperpermeability and the beneficial effect of glucocorticoid in protecting vascular endothelium. Male Sprague-Dawley rats were given either a bolus intraperitoneal injection of a nonlethal dose of LPS (Escherichia coli055:B5, 10 mg/kg, Sigma) or vehicle (pyrogen-free water). Animals of treatment groups were also given either dexamethasone (4 mg/kg, 30 min prior to LPS injection) or the matrix metalloproteinases (MMPs) inhibitor doxycycline (4 mg/kg, 30 min after LPS injection). Both activities and protein levels of MMP-2p<0.001and MMP-9p<0.001were significantly upregulated in aortic homogenates from LPS-treated rats, associated with decreased ZO-1p<0.001and syndecan-1p=0.011protein contents. Both dexamethasone and doxycycline could significantly inhibit MMPs activity and reserve the expressions of ZO-1 and syndecan-1. The inhibition of MMPs by dexamethasone was significantly lower than that by doxycycline, while the rescue of syndecan-1 expression from LPS-induced endotoxemic rat thoracic aorta was significantly higher in the dexamethasone-treated compared to the doxycycline-treatedp=0.03. In conclusion, activation of MMPs plays important role in regulating ZO-1 and syndecan-1 protein levels in LPS mediated endothelial perturbation. Both dexamethasone and doxycycline inhibit activation of MMPs that may contribute to the rescue of ZO-1 and syndecan-1 expression.


2018 ◽  
Vol 9 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Jing Shi ◽  
Guofeng Wu ◽  
Xiaohua Zou ◽  
Ke Jiang

Background/Aims: Cardiac surgery-associated acute kidney injury (CSA-AKI) is one of the most common postoperative complications in intensive care medicine. Baicalin has been shown to have anti-inflammatory and antioxidant roles in various disorders. We aimed to test the protective effects of baicalin on CSA-AKI using a rat model. Methods: Sprague-Dawley rats underwent 75 min of cardiopulmonary bypass (CPB) with 45 min of cardioplegic arrest (CA) to establish the AKI model. Baicalin was administered at different doses intragastrically 1 h before CPB. The control and treated rats were subjected to the evaluation of different kidney injury index and inflammation biomarkers. Results: Baicalin significantly attenuated CPB/CA-induced AKI in rats, as evidenced by the lower levels of serum creatinine, serum NGAL, and Kim1. Baicalin remarkably inhibited oxidative stress, reflected in the decreased malondialdehyde and myeloperoxidase activity, and enhanced superoxide dismutase activity and glutathione in renal tissue. Baicalin suppressed the expression of IL-18 and iNOS, and activated the Nrf2/HO-1 pathway. Conclusion: Our data indicated that baicalin mediated CPB/CA-induced AKI by decreasing the oxidative stress and inflammation in the renal tissues, and that baicalin possesses the potential to be developed as a therapeutic tool in clinical use for CSA-AKI.


2002 ◽  
Vol 283 (1) ◽  
pp. R243-R248 ◽  
Author(s):  
Jennifer M. Sasser ◽  
Jennifer S. Pollock ◽  
David M. Pollock

To determine the influence of chronic ANG II infusion on urinary, plasma, and renal tissue levels of immunoreactive endothelin (ET), ANG II (65 ng/min) or saline vehicle was delivered via osmotic minipump in male Sprague-Dawley rats given either a high-salt diet (10% NaCl) or normal-salt diet (0.8% NaCl). High-salt diet alone caused a slight but not statistically significant increase (7 ± 1%) in mean arterial pressure (MAP). MAP was significantly increased in ANG II-infused rats (41 ± 10%), and the increase in MAP was significantly greater in ANG II rats given a high-salt diet (59 ± 1%) compared with the increase observed in rats given a high-salt diet alone or ANG II infusion and normal-salt diet. After a 2-wk treatment, urinary excretion of immunoreactive ET was significantly increased by ∼50% in ANG II-infused animals and by over 250% in rats on high-salt diet, with or without ANG II infusion. ANG II infusion combined with high-salt diet significantly increased immunoreactive ET content in the cortex and outer medulla, but this effect was not observed in other groups. In contrast, high-salt diet, with or without ANG II infusion, significantly decreased immunoreactive ET content within the inner medulla. These data indicate that chronic elevations in ANG II levels and sodium intake differentially affect ET levels within the kidney and provide further support for the hypothesis that the hypertensive effects of ANG II may be due to interaction with the renal ET system.


1986 ◽  
Vol 251 (2) ◽  
pp. F266-F270 ◽  
Author(s):  
J. K. Kim ◽  
S. N. Summer ◽  
A. E. Erickson ◽  
R. W. Schrier

Two groups of Sprague-Dawley rats, Harlan (H) and Charles River (CR), were discovered in that the medullary thick ascending limb (MAL) had a profoundly different adenylate cyclase response to arginine vasopressin (AVP). Using these two groups of rats, we studied the correlation between AVP action on the MAL and maximal urinary concentration. AVP (10(-6) M) significantly stimulated adenylate cyclase in MAL of H rats (7.4 +/- 0.9 to 43.8 +/- 4.6 fmol cAMP formed X 30 min-1 X mm-1, P less than 0.001) but not in CR rats (10.3 +/- 1.4 to 12.7 +/- 2.0 fmol cAMP formed X 30 min-1 X mm-1, NS). In contrast, AVP significantly stimulated adenylate cyclase of cortical, outer and inner medullary collecting tubules from both H and CR rats. Glucagon (10(-6) M) significantly stimulated adenylate cyclase of MAL from both H and CR rats. After 48 h of fluid deprivation, urinary osmolality was significantly higher (P less than 0.001) in the H (4,504 +/- 399 mosmol/kg H2O, n = 14) than CR (2,840 +/- 176 mosmol/kg H2O, n = rats. This observation was not attributable to differences in creatinine clearance (CR, 1.30 +/- 0.24; H, 1.24 +/- 0.03 ml/min, NS, n = 4) or plasma AVP (CR, 12.75 +/- 1.44; H, 12.38 +/- 1.17 pg/ml, NS, n = 6) levels. These results therefore suggest that the action of AVP on the MAL, in addition to the effect on collecting tubules, is involved in maximal urinary concentration in rats.


1992 ◽  
Vol 263 (5) ◽  
pp. F806-F811 ◽  
Author(s):  
N. J. Morin ◽  
G. Laurent ◽  
D. Nonclercq ◽  
G. Toubeau ◽  
J. A. Heuson-Stiennon ◽  
...  

Epidermal growth factor (EGF) is a potent mitogen for renal tubular cells that possess specific high-affinity binding sites for this polypeptide. However, actual function of EGF within the kidney remains to be elucidated. We evaluated the effect of exogenous EGF administration on the rate of tubular regeneration in an experimental model of gentamicin (GT) nephrotoxicity. Female Sprague-Dawley rats were anesthetized, and a miniosmotic pump filled with mouse EGF or saline was implanted subcutaneously. Twenty-four hours later, GT (40 mg.kg-1 x 12 h-1 ip) was given for 4 and 8 days. Groups of treated animals and controls were killed either the day after cessation of treatment (days 5 and 9) or 4 and 8 days after the end of 8-day GT administration (days 12 and 16). Cortical GT levels of groups killed at days 5, 9, 12, and 16 were similar in animals infused with saline or EGF. Serum creatinine levels were significantly higher in GT-treated animals infused with EGF or saline and killed at days 9 and 12 compared with saline-treated animals infused with EGF or saline alone (P < 0.01). Blood urea nitrogen (BUN) also increased as a result of GT administration. However, in animals receiving GT and EGF and killed at day 16, mean BUN level was significantly lower (P < 0.01) compared with rats dosed with GT alone. In treated rats, the extent of tubular regeneration, evaluated by the rate of [3H]thymidine incorporation into renal cortical DNA or by the frequency of S-phase cells (histoautoradiography), was increased in a dose- and time-dependent fashion.(ABSTRACT TRUNCATED AT 250 WORDS)


1957 ◽  
Vol 189 (3) ◽  
pp. 557-563 ◽  
Author(s):  
Walter Hollander ◽  
Robert W. Winters ◽  
T. Franklin Williams ◽  
John Bradley ◽  
Jean Oliver ◽  
...  

The effect of graded degrees of K depletion on the ability to produce a concentrated urine was studied in Sprague-Dawley rats. With increasing degrees of K depletion, as measured by the concentration of K in fat-free skeletal muscle, there was a progrossive decrease in the maximum urinary concentration. This defect of the renal concentrating mechanism appeared to be better correlated with the degree than with the duration of potassium depletion and could be demonstrated either by the use of exogenous vasopressin or by water deprivation. The potassium-deficient rats in at least one experiment developed a significant polydipsia. The data do not allow any conclusions with respect to the relationship of the polydipsia to the renal concentrating defect except that the latter at least was not severe at the onset of the increased water intake.


Sign in / Sign up

Export Citation Format

Share Document