scholarly journals Neuroanatomical Correlates of Childhood Stuttering: MRI Indices of White and Gray Matter Development That Differentiate Persistence Versus Recovery

2019 ◽  
Vol 62 (8S) ◽  
pp. 2986-2998 ◽  
Author(s):  
Emily O. Garnett ◽  
Ho Ming Chow ◽  
Soo-Eun Chang

Purpose We review two recent neuroanatomical studies of children who stutter (CWS), one that examines white matter integrity and the other that focuses on cortical gray matter morphology. In both studies, we sought to examine differences between children whose stuttering persists (“persistent”), children who recovered from stuttering (“recovered”), and their nonstuttering peers (“controls”). Method Both of the reviewed studies use data from a large pediatric sample spanning preschool- to school-age children (3–10 years old at initial testing). Study 1 focused on surface-based measures of cortical size (thickness) and shape (gyrification) using structural magnetic resonance imaging, whereas Study 2 utilized diffusion tensor imaging to examine white matter integrity. Results In both studies, the main difference that emerged between CWS and fluent peers encompassed left hemisphere speech motor areas that are interconnected via the arcuate fasciculus. In the case of white matter integrity, the temporoparietal junction and posterior superior temporal gyrus, both connected via the left arcuate fasciculus, and regions along the corpus callosum that contain fibers connecting bilateral motor regions were significantly decreased in white matter integrity in CWS compared to controls. In the morphometric study, children who would go on to have persistent stuttering specifically had lower cortical thickness in ventral motor and premotor areas of the left hemisphere. Conclusion These results point to aberrant development of cortical areas involved in integrating sensory feedback with speech movements in CWS and differences in interhemispheric connectivity between the two motor cortices. Furthermore, developmental trajectories in these areas seem to diverge between persistent and recovered cases.

2018 ◽  
Author(s):  
David Moreau ◽  
Anna J. Wilson ◽  
Nicole S. McKay ◽  
Kasey Nihill ◽  
Karen E. Waldie

AbstractLearning disabilities such as dyslexia, dyscalculia and their comorbid manifestation are prevalent, affecting as much as fifteen percent of the population. Structural neuroimaging studies have indicated that these disorders can be related to differences in white matter integrity, although findings remain disparate. In this study, we used a unique design composed of individuals with dyslexia, dyscalculia, both disorders and controls, to systematically explore differences in fractional anisotropy across groups using diffusion tensor imaging. Specifically, we focused on the corona radiata and the arcuate fasciculus, two tracts associated with reading and mathematics in a number of previous studies. Using Bayesian hypothesis testing, we show that the present data favor the null model of no differences between groups for these particular tracts—a finding that seems to go against the current view but might be representative of the disparities within this field of research. Together, these findings suggest that structural differences associated with dyslexia and dyscalculia might not be as reliable as previously thought, with potential ramifications in terms of remediation.


Nephron ◽  
2020 ◽  
Vol 145 (1) ◽  
pp. 35-43
Author(s):  
Wesley T. Richerson ◽  
Laura G. Umfleet ◽  
Brian D. Schmit ◽  
Dawn F. Wolfgram

<b><i>Introduction:</i></b> Patients on hemodialysis (HD) have a significant burden of cognitive impairment. Characterizing the cerebral structural changes in HD patients compared to healthy controls and evaluating the relationship of cerebral structural integrity with cognitive performance in HD patients can help clarify the pathophysiology of the cognitive impairment in HD patients. <b><i>Methods:</i></b> In this cross-sectional study, in-center HD patients ≥50 years of age underwent brain structural and diffusion MRIs and cognitive assessment using the NIH Toolbox cognition battery. The cerebral imaging measures of the HD participants were compared to imaging from age-matched controls. Gray matter volume, white matter volume, and white matter integrity determined by diffusion tensor imaging parameters (including fractional anisotropy [FA]) were measured in both cohorts to determine differences in the cerebral structure between HD participants and healthy controls. The association between cognitive performance on the NIH Toolbox cognition battery and cerebral structural integrity was evaluated using multiple linear regression models. <b><i>Results:</i></b> We compared imaging measures form 23 HD participants and 15 age-matched controls. The HD participants had decreased gray matter volumes (526.8 vs. 589.5 cm<sup>3</sup>, <i>p</i> &#x3c; 0.01) and worsened white matter integrity overall (FA values of 0.2864 vs. 0.3441, <i>p</i> &#x3c; 0.01) within major white matter tracts compared to healthy controls. Decreases in white matter integrity in the left superior longitudinal fasciculus was associated with lower executive function scores (<i>r</i><sup><i>2</i></sup> = 0.24, <i>p</i> = 0.02) and inferior longitudinal fasciculus with lower memory scores (<i>r</i> = 0.25 and <i>p</i> = 0.03 for left and <i>r</i><sup>2</sup> = 0.21 and <i>p</i> = 0.03 for right). <b><i>Conclusions:</i></b> HD patients have a pattern of decreased white matter integrity and gray matter atrophy compared to controls. Decreases in white matter integrity were associated with decreased cognitive performance in the HD population.


Neurology ◽  
2017 ◽  
Vol 89 (12) ◽  
pp. 1256-1264 ◽  
Author(s):  
Janne M. Papma ◽  
Lize C. Jiskoot ◽  
Jessica L. Panman ◽  
Elise G. Dopper ◽  
Tom den Heijer ◽  
...  

Objective:To investigate cognitive function, gray matter volume, and white matter integrity in the presymptomatic stage of chromosome 9 open reading frame 72 repeat expansion (C9orf72RE).Methods:Presymptomatic C9orf72RE carriers (n = 18) and first-degree family members without a pathogenic expansion (healthy controls [HC], n = 15) underwent a standardized protocol of neuropsychological tests, T1-weighted MRI, and diffusion tensor imaging within our cohort study of autosomal dominant frontotemporal dementia (FTD). We investigated group differences in cognitive function, gray matter volume through voxel-based morphometry, and white matter integrity by means of tract-based spatial statistics. We correlated cognitive change with underlying gray or white matter.Results:Our data demonstrate lower scores on letter fluency, Stroop card I, and Stroop card III, accompanied by white matter integrity loss in tracts connecting the frontal lobe, the thalamic radiation, and tracts associated with motor functioning in presymptomatic C9orf72RE compared with HC. In a subgroup of C9orf72RE carriers above 40 years of age, we found gray matter volume loss in the thalamus, cerebellum, and parietal and temporal cortex. We found no significant relationship between subtle cognitive decline and underlying gray or white matter.Conclusions:This study demonstrates that a decline in cognitive functioning, white matter integrity, and gray matter volumes are present in presymptomatic C9orf72RE carriers. These findings suggest that neuropsychological assessment, T1-weighted MRI, and diffusion tensor imaging might be useful to identify early biomarkers in the presymptomatic stage of FTD or amyotrophic lateral sclerosis.


2013 ◽  
Vol 19 (8) ◽  
pp. 925-937 ◽  
Author(s):  
Nikki H. Stricker ◽  
David H. Salat ◽  
Jessica M. Foley ◽  
Tyler A. Zink ◽  
Ida L. Kellison ◽  
...  

AbstractImproved understanding of the pattern of white matter changes in early and prodromal Alzheimer's disease (AD) states such as mild cognitive impairment (MCI) is necessary to support earlier preclinical detection of AD, and debate remains whether white matter changes in MCI are secondary to gray matter changes. We applied neuropsychologically based MCI criteria to a sample of normally aging older adults; 32 participants met criteria for MCI and 81 participants were classified as normal control (NC) subjects. Whole-head high resolution T1 and diffusion tensor imaging scans were completed. Tract-Based Spatial Statistics was applied and a priori selected regions of interest were extracted. Hippocampal volume and cortical thickness averaged across regions with known vulnerability to AD were derived. Controlling for cortical thickness, the MCI group showed decreased average fractional anisotropy (FA) and decreased FA in parietal white matter and in white matter underlying the entorhinal and posterior cingulate cortices relative to the NC group. Statistically controlling for cortical thickness, medial temporal FA was related to memory and parietal FA was related to executive functioning. These results provide further support for the potential role of white matter integrity as an early biomarker for individuals at risk for AD and highlight that changes in white matter may be independent of gray matter changes. (JINS, 2013, 19, 1–13)


2018 ◽  
Vol 31 (2) ◽  
pp. 150-156 ◽  
Author(s):  
Yesim Beckmann ◽  
Sevgin Gökçe ◽  
Nabi Zorlu ◽  
H Sabiha Türe ◽  
Fazıl Gelal

Background Medication-overuse headache is a common clinical entity, but neuroimaging studies investigating volumetric and microstructural alterations of the brain in medication-overuse headache are rare. Therefore, in the current longitidunal study we evaluated gray matter volume and white matter integrity in patients with medication-overuse headache before and after drug withdrawal. Methods A prospective study evaluated 27 patients with medication-overuse headache and 27 age-, sex-, and education-matched healthy adults. High-resolution T1-weighted magnetic resonance imaging and diffusion tensor imaging were obtained from the control group and medication-overuse headache patients before and six months after drug withdrawal. Tract-based spatial statistics of multiple diffusivity indices and voxel-based morphometry were employed to investigate white and gray matter abnormalities. Results No correlation was found between age, gender, education and smoking status in both groups. The most commonly overused medications were simple analgesics (96.3%) and combined analgesics (3.7%). The mean duration of the history of medication overuse and headaches was 56.7 ± 63.5 months. White matter diffusional and gray matter morphological alterations including volume, fractional anisotropy, radial diffusivity, and axial diffusivity analyses showed no significant relationship in the patients before and six months after withdrawal of analgesics. Also no difference was observed between the patients versus controls. Conclusion Our data demonstrated no structural alterations within the brain in medication-overuse headache.


2021 ◽  
Vol 80 (2) ◽  
pp. 567-576
Author(s):  
Fei Han ◽  
Fei-Fei Zhai ◽  
Ming-Li Li ◽  
Li-Xin Zhou ◽  
Jun Ni ◽  
...  

Background: Mechanisms through which arterial stiffness impacts cognitive function are crucial for devising better strategies to prevent cognitive decline. Objective: To examine the associations of arterial stiffness with white matter integrity and cognition in community dwellings, and to investigate whether white matter injury was the intermediate of the associations between arterial stiffness and cognition. Methods: This study was a cross-sectional analysis on 952 subjects (aged 55.5±9.1 years) who underwent diffusion tensor imaging and measurement of brachial-ankle pulse wave velocity (baPWV). Both linear regression and tract-based spatial statistics were used to investigate the association between baPWV and white matter integrity. The association between baPWV and global cognitive function, measured as the mini-mental state examination (MMSE) was evaluated. Mediation analysis was performed to assess the influence of white matter integrity on the association of baPWV with MMSE. Results: Increased baPWV was significantly associated with lower mean global fractional anisotropy (β= –0.118, p < 0.001), higher mean diffusivity (β= 0.161, p < 0.001), axial diffusivity (β= 0.160, p < 0.001), and radial diffusivity (β= 0.147, p < 0.001) after adjustment of age, sex, and hypertension, which were measures having a direct effect on arterial stiffness and white matter integrity. After adjustment of age, sex, education, apolipoprotein E ɛ4, cardiovascular risk factors, and brain atrophy, we found an association of increased baPWV with worse performance on MMSE (β= –0.093, p = 0.011). White matter disruption partially mediated the effect of baPWV on MMSE. Conclusion: Arterial stiffness is associated with white matter disruption and cognitive decline. Reduced white matter integrity partially explained the effect of arterial stiffness on cognition.


2020 ◽  
pp. 197140092098031
Author(s):  
Pranjal Phukan ◽  
Kalyan Sarma ◽  
Aman Yusuf Khan ◽  
Bhupen Barman ◽  
Md Jamil ◽  
...  

Background and purpose Magnetic resonance imaging (MRI) of the brain in scrub typhus meningoencephalitis is non-specific, and in the majority of the cases, conventional MRI fails to detect any abnormality. However, autopsy reports depict central nervous system involvement in almost all patients. There is therefore a need for research on the quantitative assessment of brain parenchyma that can detect microstructural abnormalities. The study aimed to assess the microstructural integrity changes of scrub typhus meningoencephalitis by using different diffusion tensor imaging (DTI) parameters. Methods This was a retrospective analysis of scrub typhus meningoencephalitis. Seven patients and seven age- and sex-matched healthy controls were included. Different DTI parameters such as apparent diffusion coefficient (ADC), fractional anisotropy (FA), relative anisotropy (RA), trace, volume ratio (VR) and geodesic anisotropy (GA) were obtained from six different regions of subcortical white matter at the level of the centrum semiovale. Intergroup significant difference was determined by one-way analysis of variance followed by Tukey’s post hoc test. Receiver operating characteristic curves were constructed to determine the accuracy of the DTI matrices. Results There was a significant decrease in FA, RA and GA as well as an increase in ADC and VR in the subcortical white matter in patients with scrub typhus meningoencephalitis compared to controls ( p < 0.001). The maximum sensitivity of the DTI parameters was 85.7%, and the maximum specificity was 81%. Conclusion There was an alteration of subcortical white-matter integrity in scrub typhus meningoencephalitis that represents the axonal degeneration, myelin breakdown and neuronal degeneration. DTI may be a useful tool to detect white-matter abnormalities in scrub typhus meningoencephalitis in clinical practice, particularly in patients with negative conventional MRI.


NeuroImage ◽  
2009 ◽  
Vol 47 ◽  
pp. S128
Author(s):  
H Lemaitre ◽  
S Marenco ◽  
M Emery ◽  
T Alam ◽  
M Geramita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document