scholarly journals No Evidence for Systematic White Matter Correlates of Dyslexia and Dyscalculia

2018 ◽  
Author(s):  
David Moreau ◽  
Anna J. Wilson ◽  
Nicole S. McKay ◽  
Kasey Nihill ◽  
Karen E. Waldie

AbstractLearning disabilities such as dyslexia, dyscalculia and their comorbid manifestation are prevalent, affecting as much as fifteen percent of the population. Structural neuroimaging studies have indicated that these disorders can be related to differences in white matter integrity, although findings remain disparate. In this study, we used a unique design composed of individuals with dyslexia, dyscalculia, both disorders and controls, to systematically explore differences in fractional anisotropy across groups using diffusion tensor imaging. Specifically, we focused on the corona radiata and the arcuate fasciculus, two tracts associated with reading and mathematics in a number of previous studies. Using Bayesian hypothesis testing, we show that the present data favor the null model of no differences between groups for these particular tracts—a finding that seems to go against the current view but might be representative of the disparities within this field of research. Together, these findings suggest that structural differences associated with dyslexia and dyscalculia might not be as reliable as previously thought, with potential ramifications in terms of remediation.

2018 ◽  
Author(s):  
David Moreau ◽  
Josephine E. Stonyer ◽  
Nicole S. McKay ◽  
Karen E. Waldie

AbstractDyslexia is a prevalent neurodevelopmental disorder, characterized by reading and spelling difficulties. Beyond the behavioral and functional correlates of this condition, a growing number of studies have explored structural differences between individuals with dyslexia and typically developing individuals. To date, findings remain disparate – some studies suggest differences in fractional anisotropy (FA), an indirect measure of white matter integrity, whereas others do not identify significant disparities. Here, we synthesized the existing literature on this topic by conducting a meta-analysis of Diffusion Tensor Imaging (DTI) studies investigating white matter correlates of dyslexia via voxel-based analyses (VBA) of FA. Our results showed no reliable clusters underlying differences between dyslexics and typical individuals, after correcting for multiple comparisons (false discovery rate correction). Because group comparisons might be too coarse to yield subtle differences, we further explored differences in FA as a function of reading ability, measured on a continuous scale. Consistent with our initial findings, reading ability was not associated with reliable differences in white matter integrity. These findings nuance the current view of profound, structural differences underlying reading ability and its associated disorders, and suggest that their neural correlates might be more subtle than previously thought.


2019 ◽  
Vol 62 (8S) ◽  
pp. 2986-2998 ◽  
Author(s):  
Emily O. Garnett ◽  
Ho Ming Chow ◽  
Soo-Eun Chang

Purpose We review two recent neuroanatomical studies of children who stutter (CWS), one that examines white matter integrity and the other that focuses on cortical gray matter morphology. In both studies, we sought to examine differences between children whose stuttering persists (“persistent”), children who recovered from stuttering (“recovered”), and their nonstuttering peers (“controls”). Method Both of the reviewed studies use data from a large pediatric sample spanning preschool- to school-age children (3–10 years old at initial testing). Study 1 focused on surface-based measures of cortical size (thickness) and shape (gyrification) using structural magnetic resonance imaging, whereas Study 2 utilized diffusion tensor imaging to examine white matter integrity. Results In both studies, the main difference that emerged between CWS and fluent peers encompassed left hemisphere speech motor areas that are interconnected via the arcuate fasciculus. In the case of white matter integrity, the temporoparietal junction and posterior superior temporal gyrus, both connected via the left arcuate fasciculus, and regions along the corpus callosum that contain fibers connecting bilateral motor regions were significantly decreased in white matter integrity in CWS compared to controls. In the morphometric study, children who would go on to have persistent stuttering specifically had lower cortical thickness in ventral motor and premotor areas of the left hemisphere. Conclusion These results point to aberrant development of cortical areas involved in integrating sensory feedback with speech movements in CWS and differences in interhemispheric connectivity between the two motor cortices. Furthermore, developmental trajectories in these areas seem to diverge between persistent and recovered cases.


2021 ◽  
Vol 80 (2) ◽  
pp. 567-576
Author(s):  
Fei Han ◽  
Fei-Fei Zhai ◽  
Ming-Li Li ◽  
Li-Xin Zhou ◽  
Jun Ni ◽  
...  

Background: Mechanisms through which arterial stiffness impacts cognitive function are crucial for devising better strategies to prevent cognitive decline. Objective: To examine the associations of arterial stiffness with white matter integrity and cognition in community dwellings, and to investigate whether white matter injury was the intermediate of the associations between arterial stiffness and cognition. Methods: This study was a cross-sectional analysis on 952 subjects (aged 55.5±9.1 years) who underwent diffusion tensor imaging and measurement of brachial-ankle pulse wave velocity (baPWV). Both linear regression and tract-based spatial statistics were used to investigate the association between baPWV and white matter integrity. The association between baPWV and global cognitive function, measured as the mini-mental state examination (MMSE) was evaluated. Mediation analysis was performed to assess the influence of white matter integrity on the association of baPWV with MMSE. Results: Increased baPWV was significantly associated with lower mean global fractional anisotropy (β= –0.118, p < 0.001), higher mean diffusivity (β= 0.161, p < 0.001), axial diffusivity (β= 0.160, p < 0.001), and radial diffusivity (β= 0.147, p < 0.001) after adjustment of age, sex, and hypertension, which were measures having a direct effect on arterial stiffness and white matter integrity. After adjustment of age, sex, education, apolipoprotein E ɛ4, cardiovascular risk factors, and brain atrophy, we found an association of increased baPWV with worse performance on MMSE (β= –0.093, p = 0.011). White matter disruption partially mediated the effect of baPWV on MMSE. Conclusion: Arterial stiffness is associated with white matter disruption and cognitive decline. Reduced white matter integrity partially explained the effect of arterial stiffness on cognition.


2020 ◽  
pp. 197140092098031
Author(s):  
Pranjal Phukan ◽  
Kalyan Sarma ◽  
Aman Yusuf Khan ◽  
Bhupen Barman ◽  
Md Jamil ◽  
...  

Background and purpose Magnetic resonance imaging (MRI) of the brain in scrub typhus meningoencephalitis is non-specific, and in the majority of the cases, conventional MRI fails to detect any abnormality. However, autopsy reports depict central nervous system involvement in almost all patients. There is therefore a need for research on the quantitative assessment of brain parenchyma that can detect microstructural abnormalities. The study aimed to assess the microstructural integrity changes of scrub typhus meningoencephalitis by using different diffusion tensor imaging (DTI) parameters. Methods This was a retrospective analysis of scrub typhus meningoencephalitis. Seven patients and seven age- and sex-matched healthy controls were included. Different DTI parameters such as apparent diffusion coefficient (ADC), fractional anisotropy (FA), relative anisotropy (RA), trace, volume ratio (VR) and geodesic anisotropy (GA) were obtained from six different regions of subcortical white matter at the level of the centrum semiovale. Intergroup significant difference was determined by one-way analysis of variance followed by Tukey’s post hoc test. Receiver operating characteristic curves were constructed to determine the accuracy of the DTI matrices. Results There was a significant decrease in FA, RA and GA as well as an increase in ADC and VR in the subcortical white matter in patients with scrub typhus meningoencephalitis compared to controls ( p < 0.001). The maximum sensitivity of the DTI parameters was 85.7%, and the maximum specificity was 81%. Conclusion There was an alteration of subcortical white-matter integrity in scrub typhus meningoencephalitis that represents the axonal degeneration, myelin breakdown and neuronal degeneration. DTI may be a useful tool to detect white-matter abnormalities in scrub typhus meningoencephalitis in clinical practice, particularly in patients with negative conventional MRI.


NeuroImage ◽  
2009 ◽  
Vol 47 ◽  
pp. S128
Author(s):  
H Lemaitre ◽  
S Marenco ◽  
M Emery ◽  
T Alam ◽  
M Geramita ◽  
...  

2016 ◽  
Vol 208 (6) ◽  
pp. 585-590 ◽  
Author(s):  
Xiaodan Liu ◽  
Keita Watanabe ◽  
Shingo Kakeda ◽  
Reiji Yoshimura ◽  
Osamu Abe ◽  
...  

BackgroundHigher daytime cortisol levels because of a hyperactive hypothalamic–pituitary–adrenal axis have been reported in patients with major depressive disorder (MDD). The elevated glucocorticoids inhibit the proliferation of the oligodendrocytes that are responsible for myelinating the axons of white matter fibre tracts.AimsTo evaluate the relationship between white matter integrity and serum cortisol levels during a first depressive episode in drug-naive patients with MDD (MDD group) using a tract-based spatial statistics (TBSS) method.MethodThe MDD group (n = 29) and a healthy control group (n = 47) underwent diffusion tensor imaging (DTI) scans and an analysis was conducted using TBSS. Morning blood samples were obtained from both groups for cortisol measurement.ResultsCompared with the controls, the MDD group had significantly reduced fractional anisotropy values (P<0.05, family-wise error (FWE)-corrected) in the inferior fronto-occipital fasciculus, uncinate fasciculus and anterior thalamic radiation. The fractional anisotropy values of the inferior fronto-occipital fasciculus, uncinate fasciculus and anterior thalamic radiation had significantly negative correlations with the serum cortisol levels in the MDD group (P<0.05, FWE-corrected).ConclusionsOur findings indicate that the elevated cortisol levels in the MDD group may injure the white matter integrity in the frontal–subcortical and frontal–limbic circuits.


2021 ◽  
pp. 155005942110582
Author(s):  
Sophie A. Stewart ◽  
Laura Pimer ◽  
John D. Fisk ◽  
Benjamin Rusak ◽  
Ron A. Leslie ◽  
...  

Parkinson's disease (PD) is a neurodegenerative disorder that is typified by motor signs and symptoms but can also lead to significant cognitive impairment and dementia Parkinson's Disease Dementia (PDD). While dementia is considered a nonmotor feature of PD that typically occurs later, individuals with PD may experience mild cognitive impairment (PD-MCI) earlier in the disease course. Olfactory deficit (OD) is considered another nonmotor symptom of PD and often presents even before the motor signs and diagnosis of PD. We examined potential links among cognitive impairment, olfactory functioning, and white matter integrity of olfactory brain regions in persons with early-stage PD. Cognitive tests were used to established groups with PD-MCI and with normal cognition (PD-NC). Olfactory functioning was examined using the University of Pennsylvania Smell Identification Test (UPSIT) while the white matter integrity of the anterior olfactory structures (AOS) was examined using magnetic resonance imaging (MRI) diffusion tensor imaging (DTI) analysis. Those with PD-MCI demonstrated poorer olfactory functioning and abnormalities based on all DTI parameters in the AOS, relative to PD-NC individuals. OD and microstructural changes in the AOS of individuals with PD may serve as additional biological markers of PD-MCI.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Sussanne Reyes ◽  
Patricio Peirano ◽  
Betsy Lozoff ◽  
Cecilia Algarin

Abstract IntroductionObesity has been associated with lower white matter integrity (WMI) in limbic brain regions, including the fornix. Both early decrease of WMI in the fornix (WMIf) and midlife obesity have been related to dementia incidence with advancing age. No studies have explored early cognitive predictors of WMIf in overweight-obese (OO) adults. Aim of this study was to compare OO and normal-weight (NW) participants with respect to (a) WMIf in adulthood and (b) the relationship between cognitive performance at school-age and in adolescence with WMIf in adulthood.MethodsParticipants were part of a cohort followed since infancy who underwent magnetic resonance imaging studies in adulthood (22.3 ± 1.3 years). Diffusion tensor imaging was performed and Tract Based Spatial Statistics (TBSS) was used to obtain fractional anisotropy (FA) skeleton; increased FA relates to greater WMI. A mask for the fornix was created (JHU-ICBM DTI-81 Atlas) and then used to extract the average FA for each individual. Participants also performed neurocognitive tasks: (a) school-age (10.3 ± 1.0 years): the trail making test comprises two conditions and time difference between conditions reflects cognitive flexibility; (b) adolescence (15.6 ± 0.5 years): incentive task that test the effect of incentives (reward, loss avoidance or neutral) on inhibitory control performance (correct responses latency). In adulthood, BMI was categorized as NW (≥ 18.5 to < 25.0 kg/m2) and OO (≥ 25.0 kg/m2) groups. A t-test and univariate GLM were conducted. Analysis were adjusted by sex and age-specific BMI z-scores.ResultsParticipants were 27 NW (41% female) and 41 OO (49% female). Compared to NW, OO participants showed decreased FA in the fornix (0.585 vs. 0.618, p < 0.05), i.e. lower WMIf. Differences were apparent in the relationship between cognitive flexibility at school-age (F = 2.9, p = 0.06) and loss avoidance latency in adolescence (F = 3.5, p < 0.05) with FA in the fornix in adulthood. Increased cognitive flexibility at school-age (β = 0.335, p < 0.05) and decreased loss avoidance latency in adolescence (β = -0.581, p < 0.001) were related to higher FA in the fornix in OO adults. No relationship resulted significant in NW adults.DiscussionPerformance in neurocognitive tasks at earlier developmental stages were related with WMIf only in OO adults, group characterized by decreased WMIf. Our results provide evidence regarding specific neurocognitive tasks with predictive value for WMIf alterations. Further, they could contribute to the understanding of neural mechanisms underlying obesity and also provide insight relative to neurodegenerative risk with advancing age.SupportFondecyt 11160671 and NIH HD33487.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3409
Author(s):  
Lisa M. Hortensius ◽  
Els Janson ◽  
Pauline E. van van Beek ◽  
Floris Groenendaal ◽  
Nathalie H. P. Claessens ◽  
...  

Background: Determining optimal nutritional regimens in extremely preterm infants remains challenging. This study aimed to evaluate the effect of a new nutritional regimen and individual macronutrient intake on white matter integrity and neurodevelopmental outcome. Methods: Two retrospective cohorts of extremely preterm infants (gestational age <28 weeks) were included. Cohort B (n = 79) received a new nutritional regimen, with more rapidly increased, higher protein intake compared to cohort A (n = 99). Individual protein, lipid, and caloric intakes were calculated for the first 28 postnatal days. Diffusion tensor imaging was performed at term-equivalent age, and cognitive and motor development were evaluated at 2 years corrected age (CA) (Bayley-III-NL) and 5.9 years chronological age (WPPSI-III-NL, MABC-2-NL). Results: Compared to cohort A, infants in cohort B had significantly higher protein intake (3.4 g/kg/day vs. 2.7 g/kg/day) and higher fractional anisotropy (FA) in several white matter tracts but lower motor scores at 2 years CA (mean (SD) 103 (12) vs. 109 (12)). Higher protein intake was associated with higher FA and lower motor scores at 2 years CA (B = −6.7, p = 0.001). However, motor scores at 2 years CA were still within the normal range and differences were not sustained at 5.9 years. There were no significant associations with lipid or caloric intake. Conclusion: In extremely preterm born infants, postnatal protein intake seems important for white matter development but does not necessarily improve long-term cognitive and motor development.


Sign in / Sign up

Export Citation Format

Share Document