Multiple Frequency Tympanometry

1993 ◽  
Vol 36 (1) ◽  
pp. 178-185 ◽  
Author(s):  
Janet E. Shanks ◽  
Richard H. Wilson ◽  
Nancy K. Cambron

Three methods for compensating multiple frequency acoustic admittance measurements for ear canal volume were studied in 26 men with normal middle ear transmission systems. Peak compensated static acoustic admittance (| y |) and phase angle (ø) were calculated from sweep frequency tympanograms (226–1243 Hz in 113 Hz increments). Of the procedures used to compensate for volume in rectangular form, the ear canal pressure used to estimate volume had the largest effect on the estimate of middle ear resonance. Median resonance was 800 Hz for admittance measurements compensated at 200 daPa versus 1100 Hz for measurements compensated at –350 daPa. The remaining two methods, compensation of susceptance only versus both susceptance and conductance and compensation using the minimum volume versus separate volumes at each frequency, did not affect estimates of middle ear resonance. Estimates of middle ear resonance from compensated phase angle measurements also were compared with estimates of resonance from admittance and phase difference curves. although resonance could not be estimated from the phase difference curve, resonance estimated from the admittance difference curve agreed with the estimate from compensated phase angle.

2014 ◽  
Vol 25 (04) ◽  
pp. 343-354 ◽  
Author(s):  
Venkatesh Aithal ◽  
Joseph Kei ◽  
Carlie Driscoll ◽  
Andrew Swanston ◽  
Katrina Roberts ◽  
...  

Background: Diagnosing middle ear disorders in neonates is a challenging task for both audiologists and otolaryngologists. Although high-frequency (1000 Hz) tympanometry and acoustic stapedial reflex tests are useful in diagnosing middle ear problems in this age group, they do not provide information about the dynamics of the middle ear in terms of its resonance frequency (RF) and mobility. The sweep frequency impedance (SFI) test can provide this information, which may assist in the diagnosis of middle ear dysfunction in neonates. Purpose: This study aimed to investigate the feasibility of testing neonates using the SFI technique, establish normative SFI data for RF and mobility of the middle ear in terms of changes in sound pressure level (ΔSPL in dB), and describe the dynamics of the middle ear in healthy Australian neonates. Study Sample: A prospective sample of 100 neonates (58 males, 42 females) with a mean gestational age of 39.3 wk (SD = 1.3 wk; range = 38–42 wk), who passed all three tests, namely, automated auditory brainstem response, transient evoked otoacoustic emissions, and 1000 Hz tympanometry, were included in this study. Data Collection and Analysis: A SFI research prototype was used to collect the data. First, the SPL in the ear canal was measured as a probe-tone frequency was swept from 100–2000 Hz with the ear canal static pressure held constant at 200 daPa. Then, this measurement was repeated with the static pressure reduced in 50 daPa steps to –200 daPa. Additional measurement was also performed at the static pressure, where the peak of the 1000 Hz tympanogram occurred. A graph showing the variation of SPL against frequency at all static pressures was plotted. From this graph, the RF and ΔSPL at tympanometric peak pressure (TPP) were determined. Descriptive statistics and an analysis of variance (ANOVA) were applied to the RF and ΔSPL data with gender and ear as independent variables. Results: The results showed two resonance regions of the outer/middle ear with the high RF (mean = 1236 Hz; 90% range: 830–1518 Hz) being approximately equal to four times that of the low RF (mean = 287 Hz; 90% range = 209–420 Hz). The low RF was more easily identifiable than the high RF. The ΔSPL at the low RF (mean = 8.2 dB; 90% range = 3.4–13 dB) was greater than that at the high RF (mean = 5.0 dB; 90% range = 1.5–8.1 dB). There were no significant differences or interactions between genders and ears. Conclusion: The study showed that the SFI is a feasible test of middle ear function in neonates. The SFI results revealed two regions of resonance with the lower resonance (287 Hz) possibly related to the movements of the outer ear canal wall and higher resonance (1236 Hz) related to the resonance of the middle ear. The normative data developed in this study will be useful in evaluating outer and middle ear function in neonates.


1984 ◽  
Vol 27 (2) ◽  
pp. 257-266 ◽  
Author(s):  
Richard H. Wilson ◽  
Janet E. Shanks ◽  
Susan K. Kaplan

The influence that repeated tympanometric trials have on the aural-acoustic admittance characteristics of the middle-ear transmission system was studied in 24 young adults. The 226-Hz and 678-Hz data were generated by concurrently digitizing the conductance and admittance tympanograms at 25 daPa/s for both ascending and descending pressure directions. Ten successive trials for each frequency and direction of pressure change were made. Changes in admittance corrected for ear canal volume across the 10 tympanometrie trials were computed. The results demonstrated that generally admittance increases as the number of trials increases. For many subjects, the complexity of the tympanometric configuration also increases across trials. The results from eight subjects with single-peaked 678-Hz tympanograms were compared with the results from eight subjects with notched 678-Hz tympanograms to explain the mean decrease in susceptance across tympanometric trials. Finally, the pressure peak locations of the conductance, susceptance, and admittance tympanograms were evaluated and are discussed. The effects that differences in peak pressure location have on the computed static admittance values are presented.


1982 ◽  
Vol 93 (sup386) ◽  
pp. 100-102 ◽  
Author(s):  
J. Luotonen ◽  
A. M. M. Jokipii ◽  
P. Sipilä ◽  
J. Väyrynen ◽  
L. Jokipii ◽  
...  

1991 ◽  
Vol 34 (2) ◽  
pp. 386-390 ◽  
Author(s):  
Roanne G. Karzon

Sensitivity and specificity of static acoustic admittance (SAA) and tympanometric width (TW) were assessed for 116 pediatric patients. Otologic examination was the validation criterion. Reliability of immediate repeat tympanometric measures (SAA, TW, peak pressure, and estimate of ear canal volume) was also evaluated. A statistically significant change in SAA, with a larger SAA on measure two than measure one, was observed. No significant change across the two sequential measures was observed for TW, peak pressure, or the estimate of ear canal volume. The sensitivity and specificity data collected are discussed with respect to assisting clinicians in selecting tympanometric criteria suitable to their own clinical situation.


Author(s):  
Marcus Brown ◽  
John Bradshaw ◽  
Rong Z. Gan

Abstract Blast-induced injuries affect the health of veterans, in which the auditory system is often damaged, and blast-induced auditory damage to the cochlea is difficult to quantify. A recent study modeled blast overpressure (BOP) transmission throughout the ear utilizing a straight, two-chambered cochlea, but the spiral cochlea's response to blast exposure has yet to be investigated. In this study, we utilized a human ear finite element (FE) model with a spiraled, two-chambered cochlea to simulate the response of the anatomical structural cochlea to BOP exposure. The FE model included an ear canal, middle ear, and two and half turns of two-chambered cochlea and simulated a BOP from the ear canal entrance to the spiral cochlea in a transient analysis utilizing fluid-structure interfaces. The model's middle ear was validated with experimental pressure measurements from the outer and middle ear of human temporal bones. The results showed high stapes footplate displacements up to 28.5µm resulting in high intracochlear pressures and basilar membrane (BM) displacements up to 43.2µm from a BOP input of 30.7kPa. The cochlea's spiral shape caused asymmetric pressure distributions as high as 4kPa across the cochlea's width and higher BM transverse motion than that observed in a similar straight cochlea model. The developed spiral cochlea model provides an advancement from the straight cochlea model to increase the understanding of cochlear mechanics during blast and progresses towards a model able to predict potential hearing loss after blast.


2015 ◽  
Vol 35 (6) ◽  
pp. 583-589 ◽  
Author(s):  
Leandro L. Martins ◽  
Ijanete Almeida-Silva ◽  
Maria Rossato ◽  
Adriana A.B. Murashima ◽  
Miguel A. Hyppolito ◽  
...  

Abstract: Paca (Cuniculus paca), one of the largest rodents of the Brazilian fauna, has inherent characteristics of its species which can conribute as a new option for animal experimantation. As there is a growing demand for suitable experimental models in audiologic and otologic surgical research, the gross anatomy and ultrastructural ear of this rodent have been analyzed and described in detail. Fifteen adult pacas from the Wild Animals Sector herd of Faculdade de Ciências Agrárias e Veterinárias, Unesp-Jaboticabal, were used in this study. After anesthesia and euthanasia, we evaluated the entire composition of the external ear, registering and ddescribing the details; the temporal region was often dissected for a better view and detailing of the tympanic bulla which was removed and opened to expose the ear structures analyzed mascroscopically and ultrastructurally. The ear pinna has a triangular and concave shape with irregular ridges and sharp apex. The external auditory canal is winding in its path to the tympanic mebrane. The tympanic bulla is is on the back-bottom of the skull. The middle ear is formed by a cavity region filled with bone and membranous structures bounded by the tympanic membrane and the oval and round windows. The tympanic membrane is flat and seals the ear canal. The anatomy of the paca ear is similar to the guinea pig and from the viewpoint of experimental model has major advantages compared with the mouse ear.


1994 ◽  
Vol 73 (1) ◽  
pp. 47-48
Author(s):  
Alper Tutkun ◽  
Caglar Batman ◽  
Cüneyt Üneri ◽  
Mehmet Ali Sehitoglu

This study has been performed between December 1990—March 1991 in the Microsurgery laboratory of the Marmara University Hospital. Twelve healthy albino guinea pigs were used as a study group while the control group consists of three animals. The potentials for cholesteatoma formation of the squamous epithelium, namely the squamous epithelium of the posterior superior part of the external ear canal skin and normal skin, were investigated. Among 24 subjects who were implanted by canal skin, cholesteatoma was fanned in 21 of them. Likewise, 19 of 24 animals implanted by normal skin came out with cholesteatoma formation. Between these two types of epithelium, there is no statistical difference in cholesteatoma formation (p >0.5).


Sign in / Sign up

Export Citation Format

Share Document