scholarly journals Restoration of stamen development and production of functional pollen in an alloplasmic CMS tobacco line by ectopic expression of the Arabidopsis thaliana SUPERMAN gene

2002 ◽  
Vol 29 (5) ◽  
pp. 607-615 ◽  
Author(s):  
Agnès Bereterbide ◽  
Michel Hernould ◽  
Isabelle Farbos ◽  
Kristina Glimelius ◽  
Armand Mouras
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ching-Yu Shen ◽  
You-Yi Chen ◽  
Ke-Wei Liu ◽  
Hsiang-Chia Lu ◽  
Song-Bin Chang ◽  
...  

AbstractThe ovules and egg cells are well developed to be fertilized at anthesis in many flowering plants. However, ovule development is triggered by pollination in most orchids. In this study, we characterized the function of a Bsister gene, named PeMADS28, isolated from Phalaenopsis equestris, the genome-sequenced orchid. Spatial and temporal expression analysis showed PeMADS28 predominantly expressed in ovules between 32 and 48 days after pollination, which synchronizes with integument development. Subcellular localization and protein–protein interaction analyses revealed that PeMADS28 could form a homodimer as well as heterodimers with D-class and E-class MADS-box proteins. In addition, ectopic expression of PeMADS28 in Arabidopsis thaliana induced small curled rosette leaves, short silique length and few seeds, similar to that with overexpression of other species’ Bsister genes in Arabidopsis. Furthermore, complementation test revealed that PeMADS28 could rescue the phenotype of the ABS/TT16 mutant. Together, these results indicate the conserved function of BsisterPeMADS28 associated with ovule integument development in orchid.


2020 ◽  
Vol 47 (5) ◽  
pp. 454
Author(s):  
Jian Li ◽  
Tian Chen ◽  
Fengzhen Huang ◽  
Penghui Dai ◽  
Fuxiang Cao ◽  
...  

Serious seed abortion of dove tree (Davidia involucrate Baill.) is one of the critical factors leading to the low fecundity of this species. Seed abortion is a complicated process and various factors have been verified to synergistically determine the fate of seeds. To reveal the mechanism of seed abortion in D. involucrata, we performed transcriptome analysis in normal and abortive seeds of D. involucrata. According to the transcriptome data, we noticed that most of the genes encoding a MYB transcription factor were predominantly expressed in abortive seeds. Among these, a gene named DiMYB1 was selected and its function was validated in this study. Overexpression of DiMYB1 resulted in obviously reduced viability of transgenic seeds and seedlings, and caused a significantly higher seed abortion rate. The vegetative growth of transgenic plants was hindered, resulting in an earlier flowering time. In addition, colour changes occurred in transgenic plants. Some transgenic sprouts, stems and pods appeared purple instead of green in colour. Our finding demonstrated that DiMYB1 participates in multiple plant developmental processes, especially in seed development in Arabidopsis thaliana (L.) Heynh., which indicated the similar role of this gene in D. involucrata.


Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 772
Author(s):  
Li Zhang ◽  
Yao Zhang ◽  
Yijie Fan ◽  
Haixia Guo ◽  
Huihui Guo ◽  
...  

The homologous leucine zipper/EF-hand-containing transmembranes (LETMs) are highly conserved across a broad range of eukaryotic organisms. The LETM functional characteristics involved in biological process have been identified primarily in animals, but little is known about the LETM biological function mode in plants. Based on the results of the current investigation, the GhLETM1 gene crucially affects filament elongation and anther dehiscence of the stamen in cotton. Both excessive and lower expression of the GhLETM1 gene lead to defective stamen development, resulting in shortened filaments and indehiscent anthers with pollen abortion. The results also showed that the phenotype of the shortened filaments was negatively correlated with anther defects in the seesaw model under the ectopic expression of GhLETM1. Moreover, our results notably indicated that the gene requires accurate expression and exhibits a sensitive dose effect for its proper function. This report has important fundamental and practical significance in crop science, and has crucial prospects for genetic engineering of new cytoplasmic male sterility lines and breeding of crop hybrid varieties.


2017 ◽  
Vol 121 ◽  
pp. 140-152 ◽  
Author(s):  
Yan-Qin Ma ◽  
Dian-Zhen Li ◽  
Li Zhang ◽  
Qi Li ◽  
Jing-Wen Yao ◽  
...  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Zhonghui Zhang ◽  
Fuqu Hu ◽  
Min Woo Sung ◽  
Chang Shu ◽  
Claudia Castillo-González ◽  
...  

RNA-induced silencing complex (RISC) is composed of miRNAs and AGO proteins. AGOs use miRNAs as guides to slice target mRNAs to produce truncated 5' and 3' RNA fragments. The 5' cleaved RNA fragments are marked with uridylation for degradation. Here, we identified novel cofactors of Arabidopsis AGOs, named RICE1 and RICE2. RICE proteins specifically degraded single-strand (ss) RNAs in vitro; but neither miRNAs nor miRNA*s in vivo. RICE1 exhibited a DnaQ-like exonuclease fold and formed a homohexamer with the active sites located at the interfaces between RICE1 subunits. Notably, ectopic expression of catalytically-inactive RICE1 not only significantly reduced miRNA levels; but also increased 5' cleavage RISC fragments with extended uridine tails. We conclude that RICEs act to degrade uridylated 5’ products of AGO cleavage to maintain functional RISC. Our study also suggests a possible link between decay of cleaved target mRNAs and miRNA stability in RISC.


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 345 ◽  
Author(s):  
Junmei Kang ◽  
Huiting Cui ◽  
Shangang Jia ◽  
Wenwen Liu ◽  
Renjie Yu ◽  
...  

Arabidopsis thaliana MUT9-LIKE KINASES (MLKs), a family of the plant-specific casein kinase 1 (CK1), have been implicated collectively in multiple biological processes including flowering. Three of the four MLKs (MLK1/2/4) have been characterized, however, little is known about MLK3, the most divergent member of MLKs. Here, we demonstrated that disruption of MLK3 transcript in mlk3 caused early flowering with retarded leaf growth under long-day conditions. In vitro kinase assay showed the nuclear protein MLK3 phosphorylated histone 3 at threonine 3 (H3T3) and mutation of a conserved residue (K146R) abolished the catalytic activity. Ectopic expression of MLK3 but not MLK3(K146R) rescued the morphological defects of mlk3, indicating that an intact MLK3 is critical for maintaining proper flowering time. Transcriptomic analysis revealed that the floral repressor FLOWERING LOCUS C (FLC) was down-regulated significantly in mlk3, suggesting that MLK3 negatively regulates flowering. Hence, MLK3 plays a role in repressing the transition from vegetative to reproductive phase in A. thaliana. This study sheds light on the delicate control of flowering time by A. thaliana CK1 specific to the plant kingdom.


Sign in / Sign up

Export Citation Format

Share Document