scholarly journals Ductile dicing of LiNbO 3 ridge waveguide facets to achieve 0.29 nm surface roughness in single process step

2017 ◽  
Vol 53 (25) ◽  
pp. 1672-1674 ◽  
Author(s):  
L.G. Carpenter ◽  
S.A. Berry ◽  
C.B.E. Gawith
1998 ◽  
Vol 523 ◽  
Author(s):  
Hong Zhang

AbstractApplication of transmission electron microscopy on sub-half micron devices has been illustrated in terms of process evaluation and failure analysis. For process evaluation, it is emphasized that a large number of features need to be examined in order to have reliable conclusions about the processes, while for failure analysis, the goal is to pin-point a single process step causing failure or a single source introducing the particle defect.


Author(s):  
C. M. Chun ◽  
A. Navrotsky ◽  
I. A. Aksay

Highly pure, stoichiometric, nanometer-sized, and fairly monodispersed anhydrous crystalline BaTiO3 particles are synthesized under hydrothermal conditions in a single process step without further heat treatment by reacting titanium isopropoxide [Ti(OC3H7)4] precursor in aqueous solutions of Ba(OH)2 at 80°C. Traditional considerations of solution hydrolysis, solute condensation, and nucleation only partly explain the generation of the “raspberry-like” BaTiO3 particles composed of 5∼10 nm primary crystalline particles. Consequently, the colloidal interaction of the precipitating particles and, therefore, controlled aggregation of freshly nucleated particles must be taken into account. Our TEM studies show aggregation growth of small subunits to form uniform, rounded polyhedral particles, suggesting colloidal stability may play a key role in controlling precipitate size and shape.In order to investigate the evidence supporting the aggregation growth, Ti(OC3H7)4 precursor (Aldrich) has been added to l.OM Ba(OH)2 solution and hydrothermally reacted at 80°C in polyethylene bottles. Four molecules of water and two hydroxyl ions attach through their oxygen atoms to the titanium of Ti(OC3H7)4 in a nucleophilic process.


2003 ◽  
Vol 782 ◽  
Author(s):  
V. Dragoi ◽  
P. Lindner ◽  
T. Glinsner ◽  
M. Wimplinger ◽  
S. Farrens

ABSTRACTAnodic bonding is a powerful technique used in MEMS manufacturing. This process is applied mainly for building three-dimensional structures for microfluidic applications or for wafer level packaging. Process conditions will be evaluated in present paper. An experimental solution for bonding three wafers in one single process step (“triple-stack bonding”) will be introduced.


2012 ◽  
Vol 727-728 ◽  
pp. 248-253 ◽  
Author(s):  
Gabriel Benedet Dutra ◽  
Marco Mulser ◽  
Roger Calixto ◽  
Frank Petzoldt

Joining materials with different properties into a single component is an attractive solution that allows producing parts with unique properties. In this respect, Two-Component Metal Injection Moulding (2C-MIM) presents numerous advantages, since the moulding and joining stage are performed in a single process step. In this work, the challenges, which occur when different materials are combined, are elucidated. Furthermore, the contact between metals with unequal chemical compositions leads to atomic interdiffusion that forms an interface layer. The interface quality is crucial to the production of intact parts after processing. Different material combinations are co-sintered and the interfaces are characterized by means of optical microscopy and EDX/SEM line scans. Further, thermodynamic and kinetic simulations are used to examine the interdiffusion in detail. The results show promising possibilities to combine different materials and helpful methods to examine the interface.


2009 ◽  
Vol 1179 ◽  
Author(s):  
Mathias Dietzel ◽  
Sandra M Troian

AbstractWe investigate a method for non-contact patterning of molten polymer nanofilms based on thermocapillary modulation. Imposed thermal distributions along the surface of the film generate spatial gradients in surface tension. The resulting interfacial stresses are used to shape and mold nanofilms into 3D structures, which rapidly solidify when cooled to room temperature. Finite element simulations of the evolution of molten shapes illustrate how this technique can be used to fabricate features of different heights and separation distances in a single process step. These results provide useful guidelines for controlling proximity effects during evolution of adjacent structures.


2010 ◽  
Vol 137 ◽  
pp. 219-246 ◽  
Author(s):  
Berend Denkena ◽  
Bernd Breidenstein ◽  
Luis de Leon ◽  
Jan Dege

Novel manufacturing technologies for high-strength structural components of aluminium allow a local modification of material properties to respond to operational demands. Machining and finishing processes for changing material properties like deep rolling or rubbing are to be combined to a single process step. The intention is the controlled adjustment of the component’s properties by the modification of its subsurface. For that purpose the essential understanding of the interaction mechanisms of the basic processes turning, deep rolling and rubbing is necessary. Influences of the tool geometry as well as of the process parameters on the material properties are investigated. The results will be extended by parameter studies within numerical simulations. Thereafter, combinations of the basic processes in process sequences are analyzed to their ability to modify the subsurface properties. In consideration of these results, a prototypic combined turn-rolling tool is developed


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1235
Author(s):  
Cheng Fan ◽  
Yigang Chen ◽  
Yucheng Xue ◽  
Lei Zhang

Electrorheological (ER) polishing, as a new ultra-precision super-effect polishing method, provides little damage to the workpiece surface and is suitable for polishing all kinds of small and complex curved surface workpieces. In this paper, an ER polishing tool with an annular integrated electrode is developed. The orthogonal experiments are carried out on the six influencing factors of ER polishing which include the applied voltage, the abrasive particle size, the abrasive concentration, the polishing gap, the polishing time and the tool spindle speed. The influence order of these six factors on the ER polishing is obtained. On this basis, the effect of a single process parameter of ER polishing on surface roughness is studied experimentally.


2014 ◽  
Author(s):  
Katarzyna Holc ◽  
Annik Jakob ◽  
Thomas Weig ◽  
Klaus Köhler ◽  
Oliver Ambacher ◽  
...  

Holzforschung ◽  
2011 ◽  
Vol 65 (5) ◽  
Author(s):  
Sebastian Poth ◽  
Magaly Monzon ◽  
Nils Tippkötter ◽  
Roland Ulber

Abstract The aim of the present work is the process integration and the optimization of the enzymatic hydrolysis of wood and the following fermentation of the products to ethanol. The substrate is a fiber fraction obtained by organosolv pre-treatment of beech wood. For the ethanol production, a co-fermentation by two different yeasts (Saccharomyces cerevisiae and Pachysolen tannophilus) was carried out to convert glucose as well as xylose. Two approaches has been followed: 1. A two step process, in which the hydrolysis of the fiber fraction and the fermentation to product are separated from each other. 2. A process, in which the hydrolysis and the fermentation are carried out in one single process step as simultaneous saccharification and fermentation (SSF). Following the first approach, a yield of about 0.15 g ethanol per gram substrate can be reached. Based on the SSF, one process step can be saved, and additionally, the gained yield can be raised up to 0.3 g ethanol per gram substrate.


Sign in / Sign up

Export Citation Format

Share Document