SOI MOSFET in weak inversion and weak accumulation

1987 ◽  
Vol 23 (5) ◽  
pp. 211-213 ◽  
Author(s):  
F. Balestra ◽  
J. Brini
2019 ◽  
Vol 9 (4) ◽  
pp. 504-511
Author(s):  
Sikha Mishra ◽  
Urmila Bhanja ◽  
Guru Prasad Mishra

Introduction: A new analytical model is designed for Workfunction Modulated Rectangular Recessed Channel-Silicon On Insulator (WMRRC-SOI) MOSFET that considers the concept of groove gate and implements an idea of workfunction engineering. Methods: The impact of Negative Junction Depth (NJD) and oxide thickness (tox) are analyzed on device performances such as Sub-threshold Slope (SS), Drain Induced Barrier Lowering (DIBL) and threshold voltage. Results: The results of the proposed work are evaluated with the Rectangular Recessed Channel-Silicon On Insulator (RRC-SOI) MOSFET keeping the metal workfunction constant throughout the gate region. Furthermore, an analytical model is developed using 2D Poisson’s equation and threshold voltage is estimated in terms of minimum surface potential. Conclusion: In this work, the impact of Negative Junction Depth (NJD) on minimum surface potential and the drain current are also evaluated. It is observed from the analysis that the analog switching performance of WMRRC-SOI MOSFET surpasses RRC-SOI MOSFET in terms of better driving capability, high Ion/Ioff ratio, minimized Short Channel Effects (SCEs) and hot carrier immunity. Results are simulated using 2D Sentaurus TCAD simulator for validation of the proposed structure.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4092
Author(s):  
Grzegorz Blakiewicz ◽  
Jacek Jakusz ◽  
Waldemar Jendernalik

This paper examines the suitability of selected configurations of ultra-low voltage (ULV) oscillators as starters for a voltage boost converter to harvest energy from a thermoelectric generator (TEG). Important properties of particularly promising configurations, suitable for on-chip implementation are compared. On this basis, an improved oscillator with a low startup voltage and a high output voltage swing is proposed. The applicability of n-channel native MOS transistors with negative or near-zero threshold voltage in ULV oscillators is analyzed. The results demonstrate that a near-zero threshold voltage transistor operating in the weak inversion region is most advantageous for the considered application. The obtained results were used as a reference for design of a boost converter starter intended for integration in 180-nm CMOS X-FAB technology. In the selected technology, the most suitable transistor available with a negative threshold voltage was used. Despite using a transistor with a negative threshold voltage, a low startup voltage of 29 mV, a power consumption of 70 µW, and power conversion efficiency of about 1.5% were achieved. A great advantage of the proposed starter is that it eliminates a multistage charge pump necessary to obtain a voltage of sufficient value to supply the boost converter control circuit.


Silicon ◽  
2021 ◽  
Author(s):  
Pradipta Dutta ◽  
SubhashreeSoubhagyamayee Behera ◽  
Soumendra Prasad Rout

2008 ◽  
Vol 55 (3) ◽  
pp. 789-795 ◽  
Author(s):  
Pradeep Agarwal ◽  
Govind Saraswat ◽  
M. Jagadesh Kumar

2011 ◽  
Vol 64 (1) ◽  
pp. 18-27 ◽  
Author(s):  
Yasuhisa Omura ◽  
Azuma Yu ◽  
Yoshimasa Yoshioka ◽  
Kyota Fukuchi ◽  
Daishi Ino

Sign in / Sign up

Export Citation Format

Share Document