FIRM: high-speed distributed scheduling for ATM switches with multiple input queues

1999 ◽  
Vol 35 (22) ◽  
pp. 1915 ◽  
Author(s):  
D.N. Serpanos ◽  
P.I. Antoniadis

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 26
Author(s):  
Ramraj Dangi ◽  
Praveen Lalwani ◽  
Gaurav Choudhary ◽  
Ilsun You ◽  
Giovanni Pau

In wireless communication, Fifth Generation (5G) Technology is a recent generation of mobile networks. In this paper, evaluations in the field of mobile communication technology are presented. In each evolution, multiple challenges were faced that were captured with the help of next-generation mobile networks. Among all the previously existing mobile networks, 5G provides a high-speed internet facility, anytime, anywhere, for everyone. 5G is slightly different due to its novel features such as interconnecting people, controlling devices, objects, and machines. 5G mobile system will bring diverse levels of performance and capability, which will serve as new user experiences and connect new enterprises. Therefore, it is essential to know where the enterprise can utilize the benefits of 5G. In this research article, it was observed that extensive research and analysis unfolds different aspects, namely, millimeter wave (mmWave), massive multiple-input and multiple-output (Massive-MIMO), small cell, mobile edge computing (MEC), beamforming, different antenna technology, etc. This article’s main aim is to highlight some of the most recent enhancements made towards the 5G mobile system and discuss its future research objectives.



2005 ◽  
Author(s):  
A. lyengar ◽  
M.E. Zarki
Keyword(s):  


The systematic advancement in wireless communication has provided many significant aspects towards communication domain. However, obtaining the high-speed data transmission is still a biggest concern in various multimedia-based applications. Multiple Input Multiple Output - Orthogonal Frequency Division Multiplexing Access (MIMO-OFDMA) based communication is widespread towards research area. In addition, the combination of MIMO-OFDMA with the steering antenna can lead to improved communication efficiency and offer diversity gain without changing radio frequency (RF). This paper introduces systems for power allocation and resource allocation by A) low complex compressive channel approximation (CSCE) and b) combined parallel cancelation and Viterbi encoding / decoding (PCVed). The outcome of compressive sensing based system brings reduced Bit Error Rate (BER) and less computational complexity while the performance analysis PCVed with different approaches for 4x4 transmitter and receiver.



2019 ◽  
Vol 8 (3) ◽  
pp. 7692-7698

The tremendous growth of traffic in wireless communication (WC) system has resulted in inadequate network capacity. 5th Generation (5G) is seen as next generation wireless communication system implemented with massive multiple-input multiple-output (M-MIMO) technology. It will play major role in future communication system. M-MIMO objective is high throughput and high speed. Beamforming technique is a key to high throughput objective - achieved by reduction in errors occurring in data transmission and reception. The intent of this research paper is to review - beam forming techniques implemented in M-MIMO and research work in this particular area. Paper classifies optimized beamforming techniques in detail for determining appropriate techniques that can be deployed in M-MIMO. Understanding limitations of present techniques and suggesting new approach for better throughput is outcome of retrospective analysis.



Author(s):  
Abdul Rafay ◽  
Sevia Mahdaliza Idrus ◽  
Kamaludin Mohamad Yusof ◽  
Siti Hasunah Mohammad

Ahigh-speedrailway (HSR) has gained very high popularity for passengersdue to the fast, reliable, economical and convenient during traveling a verylong-distance journey. Thedemandfor advancedbroadbandservices such aswatching4K movies, cloud computing andonline gaming, has exponentiallyincreased fortravelerson thehigh-speedtrain(HST).The HSTcan’t providegood bandwidth to facilitate these services for travelers via existingtechnologies such as cellular networksand satellite networks because offrequent handoffs, high penetration and fading.So, the bandwidth degradesdramatically due to these issues. Research workers have developed proposalsto handle these problems by advanced transmission technologies for HSR.Until now,varioustransmissionschemeshave beensuggestedby researchworks with thefocusfor either high bandwidth or signal qualityimprovement. This paper presents a survey on advanced transmissiontechnologies for high bandwidth and good signal quality. In this paper, acomprehensive survey of the appropriate literature published that concentrateon advanced transmission methods in HSR communications in getting higherbandwidth efficiency and maximize the signal quality is presented. Advancedtransmission method can be categorized into orthogonal frequencydivisionmultiplexing (OFDM), multiple-input multiple-output (MIMO) and radio-over-fiber (RoF).



Crystals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 408 ◽  
Author(s):  
Ye Xiao ◽  
Yi-Jun Zhu ◽  
Zheng-Guo Sun

Multiple-input multiple-output (MIMO) technology as an efficient approach to improve the transmission rate in visible light communication (VLC) has been well studied in recent years. In this paper, we focus on the MIMO VLC system using multi-color LEDs in the typical indoor scenario. Besides the correlation of the MIMO channel, the multi-color crosstalk interference and quadrangle chromaticity region are also considered to increase the practicality of this system. With the constraints of power, amplitude and chromaticity, an iterative algorithm to minimize mean-squared-error (MSE) is proposed to jointly design the precoder and equalizer. Our proposed algorithm provides an effective method to get the optimal precoder by updating optimization variables iteratively. As the equalizer matrix is fixed at each iteration, the main non-convex precoding design problem is transformed into a convex optimization problem and then solved. With the utilization of multi-color LEDs, our proposed precoding method would be promising to promote the practical applications of high-speed indoor optical wireless communication. Simulation results show that our proposed method owns better performance than conventional chromaticity-fixed schemes and zero-forcing precoding designs.



Sign in / Sign up

Export Citation Format

Share Document