Submilliamp long-wavelength InP-based vertical-cavity surface-emitting laser with stable linear polarisation

2000 ◽  
Vol 36 (13) ◽  
pp. 1124 ◽  
Author(s):  
M. Ortsiefer ◽  
R. Shau ◽  
M. Zigldrum ◽  
G. Böhm ◽  
F. Köhler ◽  
...  
1998 ◽  
Vol 72 (2) ◽  
pp. 135-137 ◽  
Author(s):  
H. Gebretsadik ◽  
K. Kamath ◽  
W.-D. Zhou ◽  
P. Bhattacharya ◽  
C. Caneau ◽  
...  

2000 ◽  
Vol 39 (Part 1, No. 7A) ◽  
pp. 3997-4001 ◽  
Author(s):  
Shigeaki Sekiguchi ◽  
Tomoyuki Miyamoto ◽  
Tadayoshi Kimura ◽  
Gen Okazaki ◽  
Fumio Koyama ◽  
...  

2009 ◽  
Vol 15 (3) ◽  
pp. 838-843 ◽  
Author(s):  
Yutaka Onishi ◽  
Nobuhiro Saga ◽  
Kenji Koyama ◽  
Hideyuki Doi ◽  
Takashi Ishizuka ◽  
...  

1996 ◽  
Vol 421 ◽  
Author(s):  
D.I. Babic ◽  
V. Jayaraman ◽  
N. M. Margalit ◽  
K. Streubel ◽  
M.E. Heimbuch ◽  
...  

AbstractLong-wavelength (1300/1550 nm) vertical-cavity surface-emitting lasers (VCSELs) have been much more difficult to realize than VCSELs at shorter wavelengths such as 850/980 nm. The primary reason for this has been the low refractive index difference and reflectivity associated with lattice-matched InP/InGaAsP mirrors. A solution to this problem is to “wafer-fuse” high-reflectivity GaAs/AlGaAs mirrors to InP/InGaAsP active regions. This process has led to the first room-temperature continuous-wave (CW) 1.54 μm VCSELs. In this paper, we discuss two device geometries which employ wafer-fused mirrors, both of which lead to CW operation. We also discuss fabrication of WDM arrays using long-wavelength VCSELs.


1998 ◽  
Vol 10 (2) ◽  
pp. 188-190 ◽  
Author(s):  
M.C. Larson ◽  
M. Kondow ◽  
T. Kitatani ◽  
K. Nakahara ◽  
K. Tamura ◽  
...  

2005 ◽  
Vol 86 (6) ◽  
pp. 061108
Author(s):  
M. V. Ramana Murty ◽  
D. Xu ◽  
C.-C. Lin ◽  
C.-L. Shieh ◽  
J. Y. Tsao ◽  
...  

2020 ◽  
Vol 8 (1) ◽  
pp. 107-111
Author(s):  
Faten A. Chaqmaqchee

This paper presents a comprehensive study of optical and electrical properties of vertical-cavity surface-emitting lasers(VCSELS) for long wavelength communication applications. The device consists of GaInNAs/GaAs multi-quantum wells QWs that enclosed between standard top and bottom epitaxially grown on AlGaAs/GaAs distributed Bragg reflectors. The impact of driven currents and injecting optical powers through QWs layers on the output light emission is addressed. Room temperature spectra measurements are performed at various applied currents using 980 nm pump laser and maximum intensity amplitude at around 21 dB was achieved.


Sign in / Sign up

Export Citation Format

Share Document