scholarly journals Large memory window with low operating voltages using Hf 1.5 Gd 2 O 6 charge trapping layer and thin MoS 2 channel

2021 ◽  
Author(s):  
Zhaohao Zhang ◽  
Yaoguang Liu ◽  
Qianhui Wei ◽  
Qingzhu Zhang ◽  
Junjie Li ◽  
...  
2015 ◽  
Vol 26 (45) ◽  
pp. 455704 ◽  
Author(s):  
Jianling Meng ◽  
Rong Yang ◽  
Jing Zhao ◽  
Congli He ◽  
Guole Wang ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (13) ◽  
pp. 7812-7816 ◽  
Author(s):  
Yuxin Shen ◽  
Zhaohao Zhang ◽  
Qingzhu Zhang ◽  
Feng Wei ◽  
Huaxiang Yin ◽  
...  

In this study, a performance-enhanced charge trapping memory device with a Pt/Gd-doped HfO2/SiO2/Si structure has been investigated, where Gd-doped HfO2 acts as a charge trapping and blocking layer.


2017 ◽  
Vol 110 (22) ◽  
pp. 223501 ◽  
Author(s):  
Yuanyuan Zhang ◽  
Tao Yang ◽  
Xiaobing Yan ◽  
Zichang Zhang ◽  
Gang bai ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
S. Maikap ◽  
W. Banerjee ◽  
T. C. Tien ◽  
T. Y. Wang ◽  
J. R. Yang

Physical and memory characteristics of the atomic-layer-depositedRuOxmetal nanocrystal capacitors in an n-Si/SiO2/HfO2/RuOx/Al2O3/Pt structure with different postdeposition annealing temperatures from 850–1000°C have been investigated. TheRuOxmetal nanocrystals with an average diameter of 7 nm and a highdensity of 0.7 × 1012/cm2are observed by high-resolution transmission electron microscopy after a postdeposition annealing temperature at 1000°C. The density ofRuOxnanocrystal is decreased (slightly) by increasing the annealing temperatures, due to agglomeration of multiple nanocrystals. The RuO3nanocrystals and Hf-silicate layer at the SiO2/HfO2interface are confirmed by X-ray photoelectron spectroscopy. For post-deposition annealing temperature of 1000°C, the memory capacitors with a small equivalent oxide thickness of ~9 nm possess a large hysteresis memory window of >5 V at a small sweeping gate voltage of ±5 V. A promising memory window under a small sweeping gate voltage of ~3 V is also observed due to charge trapping in theRuOxmetal nanocrystals. The program/erase mechanism is modified Fowler-Nordheim (F-N) tunneling of the electrons and holes from Si substrate. The electrons and holes are trapped in theRuOxnanocrystals. Excellent program/erase endurance of 106cycles and a large memory window of 4.3 V with a small charge loss of ~23% at 85°C are observed after 10 years of data retention time, due to the deep-level traps in theRuOxnanocrystals. The memory structure is very promising for future nanoscale nonvolatile memory applications.


2011 ◽  
Vol 181-182 ◽  
pp. 307-311
Author(s):  
Hong Hanh Nguyen ◽  
Ngoc Son Dang ◽  
Van Duy Nguyen ◽  
Kyungsoo Jang ◽  
Kyunghyun Baek ◽  
...  

Nonvolatile memory (NVM) devices with nitride-nitride-oxynitride (NNO) stack structure using Si-rich silicon nitride (SiNx) as charge trapping layer on glass substrate were fabricated. Amorphous silicon clusters existing in the Si-rich SiNxlayer enhance the charge storage capacity of the devices. Low temperature poly-silicon (LTPS) technology, plasma-assisted oxidation/nitridation method to form a uniform ultra-thin tunneling layer, and an optimal Si-rich SiNxcharge trapping layer were used to fabricate NNO NVM devices with different tunneling thickness 2.3, 2.6 and 2.9 nm. The increase memory window, lower voltage operation but little scarifying in retention characteristics of nitride trap NVM devices had been accomplished by reducing the tunnel oxide thickness. The fabricated NVM devices with 2.9 nm tunneling thickness shows excellent electrical properties, such as a low threshold voltage, a high ON/OFF current ratio, a low operating voltage of less than ±9 V and a large memory window of 2.7 V, which remained greater than 72% over a period of 10 years.


Sign in / Sign up

Export Citation Format

Share Document