scholarly journals Evolution of the dust emission of massive galaxies up toz= 4 and constraints on their dominant mode of star formation

2015 ◽  
Vol 573 ◽  
pp. A113 ◽  
Author(s):  
Matthieu Béthermin ◽  
Emanuele Daddi ◽  
Georgios Magdis ◽  
Claudia Lagos ◽  
Mark Sargent ◽  
...  
2019 ◽  
Vol 621 ◽  
pp. A27 ◽  
Author(s):  
Theresa Falkendal ◽  
Carlos De Breuck ◽  
Matthew D. Lehnert ◽  
Guillaume Drouart ◽  
Joël Vernet ◽  
...  

We present 0.″3 (band 6) and 1.″5 (band 3) ALMA observations of the (sub)millimeter dust continuum emission for 25 radio galaxies at 1 <  z <  5.2. Our survey reaches a rms flux density of ∼50 μJy in band 6 (200–250 GHz) and ∼20 μJy in band 3 (100–130 GHz). This is an order of magnitude deeper than single-dish 850 μm observations, and reaches fluxes where synchrotron and thermal dust emission are expected to be of the same order of magnitude. Combining our sensitive ALMA observations with low-resolution radio data from ATCA, higher resolution VLA data, and infrared photometry from Herschel and Spitzer, we have disentangled the synchrotron and thermal dust emission. We determine the star-formation rates and AGN infrared luminosities using our newly developed Multi-resolution and multi-object/origin spectral energy distribution fitting code (MR-MOOSE). We find that synchrotron emission contributes substantially at λ ∼ 1 mm. Through our sensitive flux limits and accounting for a contribution from synchrotron emission in the mm, we revise downward the median star-formation rate by a factor of seven compared to previous estimates based solely on Herschel and Spitzer data. The hosts of these radio-loud AGN appear predominantly below the main sequence of star-forming galaxies, indicating that the star formation in many of the host galaxies has been quenched. Future growth of the host galaxies without substantial black hole mass growth will be needed to bring these objects on the local relation between the supermassive black holes and their host galaxies. Given the mismatch in the timescales of any star formation that took place in the host galaxies and lifetime of the AGN, we hypothesize that a key role is played by star formation in depleting the gas before the action of the powerful radio jets quickly drives out the remaining gas. This positive feedback loop of efficient star formation rapidly consuming the gas coupled to the action of the radio jets in removing the residual gas is how massive galaxies are rapidly quenched.


2018 ◽  
Vol 611 ◽  
pp. A22 ◽  
Author(s):  
C. Schreiber ◽  
I. Labbé ◽  
K. Glazebrook ◽  
G. Bekiaris ◽  
C. Papovich ◽  
...  

We obtained ALMA spectroscopy and deep imaging to investigate the origin of the unexpected sub-millimeter emission toward the most distant quiescent galaxy known to date, ZF-COSMOS-20115 at z = 3.717. We show here that this sub-millimeter emission is produced by another massive (M*~ 1011 M⊙), compact (r1∕2 = 0.67 ± 0.14 kpc) and extremely obscured galaxy (AV ~ 3.5), located only 0.43′′ (3.1 kpc) away from the quiescent galaxy. We dub the quiescent and dusty galaxies Jekyll and Hyde, respectively. No dust emission is detected at the location of the quiescent galaxy, implying SFR < 13 M⊙ yr−1 which is the most stringent upper limit ever obtained for a quiescent galaxy at these redshifts. The two sources are spectroscopically confirmed to lie at the same redshift thanks to the detection of [C II]158 in Hyde (z = 3.709), which provides one the few robust redshifts for a highly-obscured “H-dropout” galaxy (H − [4.5] = 5.1 ± 0.8). The [C II] line shows a clear rotating-disk velocity profile which is blueshifted compared to the Balmer lines of Jekyll by 549 ± 60 km s−1, demonstrating that it is produced by another galaxy. Careful de-blending of the Spitzer imaging confirms the existence of this new massive galaxy, and its non-detection in the Hubble images requires extremely red colors and strong attenuation by dust. Full modeling of the UV-to-far-IR emission of both galaxies shows that Jekyll has fully quenched at least 200Myr prior to observation and still presents a challenge for models, while Hyde only harbors moderate star-formation with SFR ≲ 120 M⊙ yr−1, and is located at least a factor 1.4 below the z ~ 4 main sequence. Hyde could also have stopped forming stars less than 200 Myr before being observed; this interpretation is also suggested by its compactness comparable to that of z ~ 4 quiescent galaxies and its low [C II]/FIR ratio, but significant on-going star-formation cannot be ruled out. Lastly, we find that despite its moderate SFR, Hyde hosts a dense reservoir of gas comparable to that of the most extreme starbursts. This suggests that whatever mechanism has stopped or reduced its star-formation must have done so without expelling the gas outside of the galaxy. Because of their surprisingly similar mass, compactness, environment and star-formation history, we argue that Jekyll and Hyde can be seen as two stages of the same quenching process, and provide a unique laboratory to study this poorly understood phenomenon.


2019 ◽  
Vol 624 ◽  
pp. A81 ◽  
Author(s):  
Allison W. S. Man ◽  
Matthew D. Lehnert ◽  
Joël D. R. Vernet ◽  
Carlos De Breuck ◽  
Theresa Falkendal

The objective of this work is to study how active galactic nuclei (AGN) influence star formation in host galaxies. We present a detailed investigation of the star-formation history and conditions of a z = 2.57 massive radio galaxy based on VLT/X-shooter and ALMA observations. The deep rest-frame ultraviolet spectrum contains photospheric absorption lines and wind features indicating the presence of OB-type stars. The most significantly detected photospheric features are used to characterize the recent star formation: neither instantaneous nor continuous star-formation history is consistent with the relative strength of the Si IIλ1485 and S Vλ1502 absorption. Rather, at least two bursts of star formation took place in the recent past, at 6+1-2 Myr and ≳20 Myr ago, respectively. We deduce a molecular H2 gas mass of (3.9 ± 1.0) × 1010 M⊙ based on ALMA observations of the [C I] 3P2−3P1 emission. The molecular gas mass is only 13% of its stellar mass. Combined with its high star-formation rate of (1020-170+190 M⊙ yr-1, this implies a high star-formation efficiency of (26 ± 8) Gyr−1 and a short depletion time of (38 ± 12) Myr. We attribute the efficient star formation to compressive gas motions in order to explain the modest velocity dispersions (⩽55 km s−1) of the photospheric lines and of the star-forming gas traced by [C I]. Because of the likely very young age of the radio source, our findings suggest that vigorous star formation consumes much of the gas and works in concert with the AGN to remove any residual molecular gas, and eventually quenching star formation in massive galaxies.


2012 ◽  
Vol 8 (S295) ◽  
pp. 354-357
Author(s):  
Peter H. Johansson

AbstractWe demonstrate that massive simulated galaxies assemble in two phases, with the initial growth dominated by compact in situ star formation, whereas the late growth is dominated by accretion of old stars formed in subunits outside the main galaxy. We also show that 1) gravitational feedback strongly suppresses late star formation in massive galaxies contributing to the observed galaxy colour bimodality that 2) the observed galaxy downsizing can be explained naturally in the two-phased model and finally that 3) the details of the assembly histories of massive galaxies are directly connected to their observed kinematic properties.


2018 ◽  
Vol 620 ◽  
pp. A60 ◽  
Author(s):  
R. Cañameras ◽  
N. P. H. Nesvadba ◽  
M. Limousin ◽  
H. Dole ◽  
R. Kneissl ◽  
...  

We report the discovery of a molecular wind signature from a massive intensely star-forming clump of a few 109 M⊙, in the strongly gravitationally lensed submillimeter galaxy “the Emerald” (PLCK_G165.7+49.0) at z = 2.236. The Emerald is amongst the brightest high-redshift galaxies on the submillimeter sky, and was initially discovered with the Planck satellite. The system contains two magnificient structures with projected lengths of 28.5″ and 21″ formed by multiple, near-infrared arcs, falling behind a massive galaxy cluster at z = 0.35, as well as an adjacent filament that has so far escaped discovery in other wavebands. We used HST/WFC3 and CFHT optical and near-infrared imaging together with IRAM and SMA interferometry of the CO(4–3) line and 850 μm dust emission to characterize the foreground lensing mass distribution, construct a lens model with LENSTOOL, and calculate gravitational magnification factors between 20 and 50 in most of the source. The majority of the star formation takes place within two massive star-forming clumps which are marginally gravitationally bound and embedded in a 9 × 1010 M⊙, fragmented disk with 20% gas fraction. The stellar continuum morphology is much smoother and also well resolved perpendicular to the magnification axis. One of the clumps shows a pronounced blue wing in the CO(4–3) line profile, which we interpret as a wind signature. The mass outflow rates are high enough for us to suspect that the clump might become unbound within a few tens of Myr, unless the outflowing gas can be replenished by gas accretion from the surrounding disk. The velocity offset of –200 km s−1 is above the escape velocity of the clump, but not that of the galaxy overall, suggesting that much of this material might ultimately rain back onto the galaxy and contribute to fueling subsequent star formation.


2017 ◽  
Vol 604 ◽  
pp. A52 ◽  
Author(s):  
A. Bracco ◽  
P. Palmeirim ◽  
Ph. André ◽  
R. Adam ◽  
P. Ade ◽  
...  

The characterization of dust properties in the interstellar medium is key for understanding the physics and chemistry of star formation. Mass estimates are crucial to determine gravitational collapse conditions for the birth of new stellar objects in molecular clouds. However, most of these estimates rely on dust models that need further observational constraints to capture the relevant parameter variations depending on the local environment: from clouds to prestellar and protostellar cores. We present results of a new study of dust emissivity changes based on millimeter continuum data obtained with the NIKA camera at the IRAM-30 m telescope. Observing dust emission at 1.15 mm and 2 mm allows us to constrain the dust emissivity index, β, in the Rayleigh-Jeans tail of the dust spectral energy distribution far from its peak emission, where the contribution of other parameters (i.e. dust temperature) is more important. Focusing on the Taurus molecular cloud, one of the most famous low-mass star-forming regions in the Gould Belt, we analyze the emission properties of several distinct objects in the B213 filament. This subparsec-sized region is of particular interest since it is characterized by a collection ofevolutionary stages of early star formation: three prestellar cores, two Class 0/I protostellar cores and one Class II object. We are therefore able to compare dust properties among a sequence of sources that likely derive from the same parent filament. By means of the ratio of the two NIKA channel maps, we show that in the Rayleigh-Jeans approximation, βRJ varies among the objects: it decreases from prestellar cores (βRJ ~ 2) to protostellar cores (βRJ ~ 1) and the Class II object (βRJ ~ 0). For one prestellar and two protostellar cores, we produce a robust study using available Herschel data to constrain the dust temperature of the sources. By using the Abel transform inversion technique we derive accurate radial temperature profiles that allow us to obtain radial β profiles. We find systematic spatial variations of β in the protostellar cores that are not observed in the prestellar core. While in the former case β decreases toward the center (with β varying between 1 and 2), in the latter it remains constant (β = 2.4 ± 0.3). Moreover, the dust emissivity index appears anticorrelated with the dust temperature. We discuss the implication of these results in terms of dust grain evolution between pre- and protostellar cores.


2020 ◽  
Vol 643 ◽  
pp. A178
Author(s):  
Kadirya Tursun ◽  
Jarken Esimbek ◽  
Christian Henkel ◽  
Xindi Tang ◽  
Gang Wu ◽  
...  

We surveyed the Aquila Rift complex including the Serpens South and W 40 regions in the NH3 (1,1) and (2,2) transitions making use of the Nanshan 26-m telescope. Our observations cover an area of ~ 1.5° × 2.2° (11.4 pc × 16.7 pc). The kinetic temperatures of the dense gas in the Aquila Rift complex obtained from NH3 (2,2)/(1,1) ratios range from 8.9 to 35.0 K with an average of 15.3 ± 6.1 K (errors are standard deviations of the mean). Low gas temperatures are associated with Serpens South ranging from 8.9 to 16.8 K with an average of 12.3 ± 1.7 K, while dense gas in the W 40 region shows higher temperatures ranging from 17.7 to 35.0 K with an average of 25.1 ± 4.9 K. A comparison of kinetic temperatures derived from para-NH3 (2,2)/(1,1) against HiGal dust temperatures indicates that the gas and dust temperatures are in agreement in the low-mass-star formation region of Serpens South. In the high-mass-star formation region W 40, the measured gas kinetic temperatures are higher than those of the dust. The turbulent component of the velocity dispersion of NH3 (1,1) is found to be positively correlated with the gas kinetic temperature, which indicates that the dense gas may be heated by dissipation of turbulent energy. For the fractional total-NH3 (para+ortho) abundance obtained by a comparison with Herschel infrared continuum data representing dust emission, we find values from 0.1 ×10−8 to 2.1 ×10−7 with an average of 6.9 (±4.5) × 10−8. Serpens South also shows a fractional total-NH3 (para+ortho) abundance ranging from 0.2 ×10−8 to 2.1 ×10−7 with an average of 8.6 (±3.8) × 10−8. In W 40, values are lower, between 0.1 and 4.3 ×10−8 with an average of 1.6 (±1.4) × 10−8. Weak velocity gradients demonstrate that the rotational energy is a negligible fraction of the gravitational energy. In W 40, gas and dust temperatures are not strongly dependent on the projected distance to the recently formed massive stars. Overall, the morphology of the mapped region is ring-like, with strong emission at lower and weak emission at higher Galactic longitudes. However, the presence of a physical connection between the two parts remains questionable.


2012 ◽  
Vol 8 (S295) ◽  
pp. 191-199
Author(s):  
Carlton M. Baugh

AbstractMassive galaxies with old stellar populations have been put forwards as a challenge to models in which cosmic structures grow hierarchically through gravitational instability. I will explain how the growth of massive galaxies is helped by features of hierarchical models. I give a brief outline of how the galaxy formation process is modelled in hierarchical cosmologies using semi-analytical models, and illustrate how these models can be refined as our understanding of processes such as star formation improves. I then present a brief survey of the current state of play in the modelling of massive galaxies and list some outstanding challenges.


2020 ◽  
Vol 58 (1) ◽  
pp. 661-725 ◽  
Author(s):  
Natascha M. Förster Schreiber ◽  
Stijn Wuyts

Ever deeper and wider look-back surveys have led to a fairly robust outline of the cosmic star-formation history, which culminated around [Formula: see text]; this period is often nicknamed “cosmic noon.” Our knowledge about star-forming galaxies at these epochs has dramatically advanced from increasingly complete population censuses and detailed views of individual galaxies. We highlight some of the key observational insights that influenced our current understanding of galaxy evolution in the equilibrium growth picture: ▪  Scaling relations between galaxy properties are fairly well established among massive galaxies at least out to [Formula: see text], pointing to regulating mechanisms already acting on galaxy growth. ▪  Resolved views reveal that gravitational instabilities and efficient secular processes within the gas- and baryon-rich galaxies at [Formula: see text] play an important role in the early buildup of galactic structure. ▪  Ever more sensitive observations of kinematics at [Formula: see text] are probing the baryon and dark matter budget on galactic scales and the links between star-forming galaxies and their likely descendants. ▪  Toward higher masses, massive bulges, dense cores, and powerful AGNs and AGN-driven outflows are more prevalent and likely play a role in quenching star formation. We outline emerging questions and exciting prospects for the next decade with upcoming instrumentation, including the James Webb Space Telescope and the next generation of extremely large telescopes.


2019 ◽  
Vol 631 ◽  
pp. A38 ◽  
Author(s):  
S. Lianou ◽  
P. Barmby ◽  
A. A. Mosenkov ◽  
M. Lehnert ◽  
O. Karczewski

Aims. We derived the dust properties for 753 local galaxies and examine how these relate to some of their physical properties. We present the derived dust emission properties, including model spectral energy distribution (SEDs), star formation rates (SFRs) and stellar masses, as well as their relations. Methods. We modelled the global dust-SEDs for 753 galaxies, treated statistically as an ensemble within a hierarchical Bayesian dust-SED modelling approach, so as to derive their infrared (IR) emission properties. To create the observed dust-SEDs, we used a multi-wavelength set of observations, ranging from near-IR to far-IR-to-submillimeter wavelengths. The model-derived properties are the dust masses (Mdust), the average interstellar radiation field intensities (Uav), the mass fraction of very small dust grains (“QPAH” fraction), as well as their standard deviations. In addition, we used mid-IR observations to derive SFR and stellar masses, quantities independent of the dust-SED modelling. Results. We derive distribution functions of the properties for the galaxy ensemble and as a function of galaxy type. The mean value of Mdust for the early-type galaxies (ETGs) is lower than that for the late-type and irregular galaxies (LTGs and Irs, respectively), despite ETGs and LTGs having stellar masses spanning across the whole range observed. The Uav and “QPAH” fraction show no difference among different galaxy types. When fixing Uav to the Galactic value, the derived “QPAH” fraction varies across the Galactic value (0.071). The specific SFR increases with galaxy type, while this is not the case for the dust-specific SFR (SFR/Mdust), showing an almost constant star formation efficiency per galaxy type. The galaxy sample is characterised by a tight relationship between the dust mass and the stellar mass for the LTGs and Irs, while ETGs scatter around this relation and tend towards smaller dust masses. While the relation indicates that Mdust may fundamentally be linked to M⋆, metallicity and Uav are the second parameter driving the scatter, which we investigate in a forthcoming work. We used the extended Kennicutt–Schmidt (KS) law to estimate the gas mass and the gas-to-dust mass ratio (GDR). The gas mass derived from the extended KS law is on average ∼20% higher than that derived from the KS law, and a large standard deviation indicates the importance of the average star formation present to regulate star formation and gas supply. The average GDR for the LTGs and Irs is 370, and including the ETGs gives an average of 550.


Sign in / Sign up

Export Citation Format

Share Document