scholarly journals Near-infrared scattering as a dust diagnostic

2018 ◽  
Vol 614 ◽  
pp. A95 ◽  
Author(s):  
Mika Saajasto ◽  
Mika Juvela ◽  
Johanna Malinen

Context. Regarding the evolution of dust grains from diffuse regions of space to dense molecular cloud cores, many questions remain open. Scattering at near-infrared wavelengths, or “cloudshine”, can provide information on cloud structure, dust properties, and the radiation field that is complementary to mid-infrared “coreshine” and observations of dust emission at longer wavelengths. Aims. We examine the possibility of using near-infrared scattering to constrain the local radiation field and the dust properties, the scattering and absorption efficiency, the size distribution of the grains, and the maximum grain size. Methods. We use radiative transfer modelling to examine the constraints provided by the J, H, and K bands in combination with mid-infrared surface brightness at 3.6 μm. We use spherical one-dimensional and elliptical three-dimensional cloud models to study the observable effects of different grain size distributions with varying absorption and scattering properties. As an example, we analyse observations of a molecular cloud in Taurus, TMC-1N. Results. The observed surface brightness ratios of the bands change when the dust properties are changed. However, even a change of ±10% in the surface brightness of one band changes the estimated power-law exponent of the size distribution γ by up to ~30% and the estimated strength of the radiation field KISRF by up to ~60%. The maximum grain size Amax and γ are always strongly anti-correlated. For example, overestimating the surface brightness by 10% changes the estimated radiation field strength by ~20% and the exponent of the size distribution by ~15%. The analysis of our synthetic observations indicates that the relative uncertainty of the parameter distributions are on average Amax, γ ~ 25%, and the deviation between the estimated and correct values ΔQ < 15%. For the TMC-1N observations, a maximum grain size Amax > 1.5μm and a size distribution with γ > 4.0 have high probability. The mass weighted average grain size is ⟨am⟩ = 0.113μm. Conclusions. We show that scattered infrared light can be used to derive meaningful limits for the dust parameters. However, errors in the surface brightness data can result in considerable uncertainties on the derived parameters.

1986 ◽  
Vol 71 ◽  
Author(s):  
G.J. Van Der Kolk ◽  
M.J. Verkerk

AbstractAl was evaporated at oxygen partial pressures, PO2, varying between 10−7 and 10−4 Pa on substrates of silicon nitride. The substrate temperature was varied between 20 °C and 250°C. The films were annealed at temperatures up to 500°C.For Al films deposited at 20°C, it was found that the average grain size decreases with increasing oxygen partial pressure. After annealing recrystallization was observed. The relative increase of grain size was less for higher values of pO2. Annealing gave rise to a broad grain size distribution.For Al films deposited at 250°C, the presence of oxygen caused the growth of rough inhomogeneous films. This inhomogeneous structure remained during annealing.


2000 ◽  
Vol 634 ◽  
Author(s):  
Carl C. Koch ◽  
J. Narayan

ABSTRACTThis paper critically reviews the data in the literature which gives softening—the inverse Hall-Petch effect—at the finest nanoscale grain sizes. The difficulties with obtaining artifactfree samples of nanocrystalline materials will be discussed along with the problems of measurement of the average grain size distribution. Computer simulations which predict the inverse Hall-Petch effect are also noted as well as the models which have been proposed for the effect. It is concluded that while only a few of the experiments which have reported the inverse Hall-Petch effect are free from obvious or possible artifacts, these few along with the predictions of computer simulations suggest it is real. However, it seems that it should only be observed for grain sizes less than about 10 nm.


2009 ◽  
Vol 1224 ◽  
Author(s):  
Malgorzata Lewandowska ◽  
Romuald Dobosz ◽  
Krzysztof J Kurzydlowski

AbstractThe paper reports new experimental results describing properties and microstructure of nanocrystalline metals. Nano- and sub-micron aluminium has been produced by hydrostatic extrusion at ambient tempearture. The structures have been quantified in terms of size of grains and misorientation of the grain boundaries. Different average size of grains, variable normalized width of grain size distribution and changing grain boundary misorientation distribution functions have been revealed depending on processing parameters. The results of the tensile tests showed that the average grain size, grain size distribution and the distribution function of misorientation angles influence the flow stress of obtained nano-metals. In order to explain the observed difference in the properties of nano- and micro-sized aluminium alloys, a Finite Element Method models have been developed, which assumes that both grain boundaries and grain interiors may accommodated elastic and non-linear plastic deformation. These models assumed true geometry of grains (which differed in size and shape). Also, variable mechanical properties of grain boundaries have been taken into account (elastic modulus, yield strength and work hardening rate). The results of modelling explain in a semi-quantitative way macroscopic deformation of nano-crystalline aggregates. In particular, they illustrate the importance of the interplay between properties of grain boundaries and grain interiors in elastic and plastic regime.


2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Deng ◽  
Zhuo-Fei Fan ◽  
Bin-Bin Zhao ◽  
Xing-Guang Wang ◽  
Shiyuan Zhao ◽  
...  

AbstractChaos in nonlinear dynamical systems is featured with irregular appearance and with high sensitivity to initial conditions. Near-infrared light chaos based on semiconductor lasers has been extensively studied and has enabled various applications. Here, we report a fully-developed hyperchaos in the mid-infrared regime, which is produced from interband cascade lasers subject to the external optical feedback. Lyapunov spectrum analysis demonstrates that the chaos exhibits three positive Lyapunov exponents. Particularly, the chaotic signal covers a broad frequency range up to the GHz level, which is two to three orders of magnitude broader than existed mid-infrared chaos solutions. The interband cascade lasers produce either periodic oscillations or low-frequency fluctuations before bifurcating to hyperchaos. This hyperchaos source is valuable for developing long-reach secure optical communication links and remote chaotic Lidar systems, taking advantage of the high-transmission windows of the atmosphere in the mid-infrared regime.


2007 ◽  
Vol 558-559 ◽  
pp. 729-734 ◽  
Author(s):  
Michael Ferry ◽  
N. Burhan

A supersaturated Al-0.3 wt.% Sc alloy was cold deformed by ECAP to an equivalent von Mises strain of 9.2 then pre-aged at 350 °C to generate a fine-grained alloy with an average grain size of 1 μm. The microstructure was highly resistant to grain coarsening at temperatures up to 500 °C with a detailed statistical analysis showing that the initial grain size distribution was very close to lognormal and, throughout annealing, remained lognormal and the normalized frequency distribution was time/temperature invariant despite a moderate broadening of the size distribution. This behaviour is largely similar to subgrain coarsening during recovery and grain growth after recrystallization. The homogeneous evolution of the microstructure during annealing, coupled with no appreciable change in texture, is also consistent with the advanced stages of continuous recrystallization.


2020 ◽  
Vol 86 (4) ◽  
pp. 39-45
Author(s):  
S. I. Arkhangelskiy ◽  
D. M. Levin

A statistical analysis of the grain size distribution is important both for developing theories of the grain growth and microstructure formation, and for describing the size dependences of various characteristics of the physical and mechanical properties of polycrystalline materials. The grain size distribution is also an important characteristic of the structure uniformity and, therefore, stability of the properties of the products during operation. Statistical Monte Carlo modeling of single-phase and equiaxed polycrystalline microstructures was carried out to determine the type of statistically valid distribution function and reliable estimates of the average grain size. Statistical parameters (mean values, variances, variation coefficient) and distribution functions of the characteristics of the grain microstructure were obtained. It is shown that the distribution function of the effective grain sizes for the studied polycrystal model is most adequately described by γ-distribution, which is recommended to be used in analysis of the experimental distribution functions of grain sizes of single-phase polycrystalline materials with equiaxed grains. The general average (mathematical expectation) of the effective grain size (projection diameter) with γ-distribution function (parameters of the distribution function are to be previously determined in analysis of the grain structure of polycrystalline materials) should be taken as a statistically valid and reliable estimate of the average grain size. The results of statistical modeling are proved by the experimental data of metallographic study of the microstructures of single-phase model and industrial materials with different degree of the grain structure heterogeneity.


2008 ◽  
Vol 140 ◽  
pp. 185-190 ◽  
Author(s):  
T.B. Tengen ◽  
Tomasz Wejrzanowski ◽  
R. Iwankiewicz ◽  
Krzysztof Jan Kurzydlowski

Predicting the properties of a material from knowledge of the internal microstructures is attracting significant interest in the fields of materials design and engineering. The most commonly used expression, known as Hall-Petch Relationship (HPR), reports on the relationship between the flow stress and the average grain size. However, there is much evidence that other statistical information that the grain size distribution in materials may have significant impact on the mechanical properties. These could even be more pronounced in the case of grains of the nanometer size, where the HPR is no longer valid and the Reverse-HPR is more applicable. This paper proposes a statistical model for the relationship between flow stress and grain size distribution. The model considered different deformation mechanisms and was used to predict mechanical properties of aluminium and copper. The results obtained with the model shows that the dispersion of grain size distribution plays an important role in the design of desirable mechanical properties. In particular, it was found that that the dependence of a material’s mechanical properties on grain size dispersion also follows the HPR to Inverse-HPR type of behaviour. The results also show that copper is more sensitive to changes in grain size distribution than aluminium.


1996 ◽  
Vol 157 ◽  
pp. 23-29
Author(s):  
Debra Meloy Elmegreen

AbstractPrevious optical surface photometry of barred spiral galaxies revealed that there are two distinct types of bars: large bars tend to have a nearly constant surface brightness (”flat“ bar), while smaller bars tend to have a decreasing surface brightness with a scale length similar to the disk (”exponential“ bar). Statistically, flat bars tend to occur in early Hubble types and exponential bars in later types. Studies of resonances in spirals indicate that flat bars end inside corotation, while exponential bars end between the inner Lindblad and 4:1 resonances. Near-infrared (JHK) surface photometry of bars is presented in order to compare the stellar distributions and bar potentials in flat and exponential barred galaxies. The presence of isophotal twists in some galaxies provides additional information on resonances. The grand design and fiocculent optical structures in the two types of barred galaxies will be compared and contrasted with their near-infrared light distributions.


Sign in / Sign up

Export Citation Format

Share Document