scholarly journals The Gaia-ESO Survey: impact of extra mixing on C and N abundances of giant stars

2018 ◽  
Vol 621 ◽  
pp. A24 ◽  
Author(s):  
N. Lagarde ◽  
C. Reylé ◽  
A. C. Robin ◽  
G. Tautvaišienė ◽  
A. Drazdauskas ◽  
...  

Context. The Gaia-ESO Public Spectroscopic Survey using FLAMES at the VLT has obtained high-resolution UVES spectra for a large number of giant stars, allowing a determination of the abundances of the key chemical elements carbon and nitrogen at their surface. The surface abundances of these chemical species are known to change in stars during their evolution on the red giant branch (RGB) after the first dredge-up episode, as a result of the extra mixing phenomena. Aims. We investigate the effects of thermohaline mixing on C and N abundances using the first comparison between the Gaia-ESO survey [C/N] determinations with simulations of the observed fields using a model of stellar population synthesis. Methods. We explore the effects of thermohaline mixing on the chemical properties of giants through stellar evolutionary models computed with the stellar evolution code STAREVOL. We include these stellar evolution models in the Besançon Galaxy model to simulate the [C/N] distributions determined from the UVES spectra of the Gaia-ESO survey and to compare them with the observations. Results. Theoretical predictions including the effect of thermohaline mixing are in good agreement with the observations. However, the field stars in the Gaia-ESO survey with C and N abundance measurements have a metallicity close to solar, where the efficiency of thermohaline mixing is not very large. The C and N abundances derived by the Gaia-ESO survey in open and globular clusters clearly show the impact of thermohaline mixing at low metallicity, which explains the [C/N] value observed in lower mass and older giant stars. Using independent observations of carbon isotopic ratio in clump field stars and open clusters, we also confirm that thermohaline mixing should be taken into account to explain the behaviour of 12C/13C as a function of stellar age. Conclusions. Overall, the current model including thermohaline mixing is able to reproduce very well the C and N abundances over the whole metallicity range investigated by the Gaia-ESO survey data.

2020 ◽  
Vol 644 ◽  
pp. A83
Author(s):  
José G. Fernández-Trincado ◽  
Timothy C. Beers ◽  
Dante Minniti

Detailed elemental-abundance patterns of giant stars in the Galactic halo measured by the Apache Point Observatory Galactic Evolution Experiment (APOGEE-2) have revealed the existence of a unique and significant stellar subpopulation of silicon-enhanced ([Si/Fe] ≳ +0.5) metal-poor stars, spanning a wide range of metallicities (−1.5 ≲ [Fe/H] ≲ −0.8). Stars with over-abundances in [Si/Fe] are of great interest because these have very strong silicon (28Si) spectral features for stars of their metallicity and evolutionary stage, offering clues about rare nucleosynthetic pathways in globular clusters (GCs). Si-rich field stars have been conjectured to have been evaporated from GCs, however, the origin of their abundances remains unclear, and several scenarios have been offered to explain the anomalous abundance ratios. These include the hypothesis that some of them were born from a cloud of gas previously polluted by a progenitor that underwent a specific and peculiar nucleosynthesis event or, alternatively, that they were due to mass transfer from a previous evolved companion. However, those scenarios do not simultaneously explain the wide gamut of chemical species that are found in Si-rich stars. Instead, we show that the present inventory of such unusual stars, as well as their relation to known halo substructures (including the in situ halo, Gaia-Enceladus, the Helmi Stream(s), and Sequoia, among others), is still incomplete. We report the chemical abundances of the iron-peak (Fe), the light- (C and N), the α- (O and Mg), the odd-Z (Na and Al), and the s-process (Ce and Nd) elements of 55 newly identified Si-rich field stars (among more than ∼600 000 APOGEE-2 targets), which exhibit over-abundances of [Si/Fe] as extreme as those observed in some Galactic GCs, and they are relatively well distinguished from other stars in the [Si/Fe]−[Fe/H] plane. This new census confirms the presence of a statistically significant and chemically-anomalous structure in the inner halo: Jurassic. The chemo-dynamical properties of the Jurassic structure is consistent with it being the tidally disrupted remains of GCs, which are easily distinguished by an over-abundance of [Si/Fe] among Milky Way populations or satellites.


1998 ◽  
Vol 11 (1) ◽  
pp. 430-432
Author(s):  
Ted Von Hippel

The study of cluster white dwarfs (WDs) has been invigorated recently bythe Hubble Space Telescope (HST). Recent WD studies have been motivated by the new and independent cluster distance (Renzini et al. 1996), age (von Hippel et al. 1995; Richer et al. 1997), and stellar evolution (Koester & Reimers 1996) information that cluster WDs can provide. An important byproduct of these studies has been an estimate of the WD mass contribution in open and globular clusters. The cluster WD mass fraction is of importance for understanding the dynamical state and history of star clusters. It also bears an important connection to the WD mass fractions of the Galactic disk and halo. Current evidence indicates that the open clusters (e.g. von Hippel et al. 1996; Reid this volume) have essentially the same luminosity function (LF) as the solar neighborhood population. The case for the halo is less clear, despite the number of very good globular cluster LFs down to nearly 0.1 solar masses (e.g. Cool et al. 1996; Piotto, this volume), as the field halo LF is poorly known. For most clusters dynamical evolution should cause evaporation of the lowest mass members, biasing clusters to have flatter present-day mass functions (PDMFs) than the disk and halo field populations. Dynamical evolution should also allow cluster WDs to escape, though not in the same numbers as the much lower mass main sequence stars. The detailed connection between cluster PDMFs and the field IMF awaits elucidation from observations and the new combined N-body and stellar evolution models (Tout, this volume). Nevertheless, the WD mass fraction of clusters already provides an estimate for the WD mass fraction of the disk and halo field populations. A literature search to collect cluster WDs and a simple interpretive model follow. This is a work in progress and the full details of the literature search and the model will be published elsewhere.


Author(s):  
N Holanda ◽  
N Drake ◽  
W J B Corradi ◽  
F A Ferreira ◽  
F Maia ◽  
...  

Abstract We present the results of a chemical analysis of fast and anomalous rotator giants members of the young open cluster NGC 6124. For this purpose, we carried out abundances of the mixing sensitive species such as Li, C, N, Na and 12C/13C isotopic ratio, as well as other chemical species for a sample of four giants among the seven observed ones. This study is based on standard spectral analysis technique using high-resolution spectroscopic data. We also performed an investigation of the rotational velocity (v sin  i) once this sample exhibit abnormal values – giant stars commonly present rotational velocities of few km s−1. In parallel, we have been performed a membership study, making use of the third data release from ESA Gaia mission. Based on these data, we estimated a distance of d = 630 pc and an age of 178 Myr through isochrone fitting. After that procedure, we matched all the information raised and investigated the evolutionary stages and thermohaline mixing model through of spectroscopic Teff and log  g and mixing tracers, as 12C/13C and Na, of the studied stars. We derived a low mean metallicity of [Fe/H] = −0.13 ±0.05 and a modest enhancement of the elements created by the s-process such as Y, Zr, La, Ce, and Nd, which is in agreement of what has already been reported in the literature for young clusters. The giants analyzed have homogeneous abundances, except for lithium abundance [log  ε(Li)NLTE = 1.08±0.42] and this may be associated to a combination of mechanisms that act increasing or decreasing lithium abundances in stellar atmospheres.


2000 ◽  
Vol 198 ◽  
pp. 516-517
Author(s):  
Suzanne Talon ◽  
Corinne Charbonnel

We present the impact of meridional circulation and shear turbulence on the evolution of the lithium abundance at the surface of evolved stars originating from the hot side of the Li Dip. We show that our fully consistent treatment of the same hydrodynamical processes which can account for C and N anomalies in B type stars (Talon et al. 1997) and for the shape of the hot side of the Li dip in open clusters (Talon & Charbonnel 1998) also explains Li observations in stars with Teff higher than 7000K on the main sequence as well as in their evolved counterparts (see also Charbonnel & Talon 1999).


2020 ◽  
Vol 641 ◽  
pp. A73
Author(s):  
Richard Hoppe ◽  
Maria Bergemann ◽  
Bertram Bitsch ◽  
Aldo Serenelli

In this study, we focus on the impact of accretion from protoplanetary discs on the stellar evolution of AFG-type stars. We used a simplified disc model that was computed using the Two-Pop-Py code, which contains the growth and drift of dust particles in the protoplanetary disc, to model the accretion scenarios for a range of physical conditions for protoplanetary discs. Two limiting cases were combined with the evolution of stellar convective envelopes that were computed using the Garstec stellar evolution code. We find that the accretion of metal-poor (gas) or metal-rich (dust) material has a significant impact on the chemical composition of the stellar convective envelope. As a consequence, the evolutionary track of the star diverts from the standard scenario predicted by canonical stellar evolution models, which assume a constant and homogeneous chemical composition after the assembly of the star is complete. In the case of the Sun, we find a modest impact on the solar chemical composition. Indeed, the accretion of metal-poor material reduces the overall metallicity of the solar atmosphere and it is consistent, within the uncertainty, with the solar Z reported by Caffau et al. (2011, Sol. Phys., 268, 255), but our model is not consistent with the measurement by Asplund et al. (2009, ARA&A, 47, 481). Another relevant effect is the change of the position of the star in the colour-magnitude diagram. By comparing our predictions with a set of open clusters from the Gaia DR2, we show that it is possible to produce a scatter close to the TO of young clusters that could contribute to explaining the observed scatter in CMDs. Detailed measurements of metallicities and abundances in the nearby open clusters will additionally provide a stringent observational test for our proposed scenario.


2018 ◽  
Vol 615 ◽  
pp. A165 ◽  
Author(s):  
Vilius Bagdonas ◽  
Arnas Drazdauskas ◽  
Gražina Tautvaišienė ◽  
Rodolfo Smiljanic ◽  
Yuriy Chorniy

Context. Homogeneous investigations of red giant stars in open clusters contribute to studies of internal evolutionary mixing processes inside stars, which are reflected in abundances of mixing-sensitive chemical elements like carbon, nitrogen, and sodium, while α- and neutron-capture element abundances are useful in tracing the Galactic chemical evolution. Aims. The main aim of this study is a comprehensive chemical analysis of red giant stars in the open cluster IC 4756, including determinations of 12C∕13C and C/N abundance ratios, and comparisons of the results with theoretical models of stellar and Galactic chemical evolution. Methods. We used a classical differential model atmosphere method to analyse high-resolution spectra obtained with the FEROS spectrograph on the 2.2 m MPG/ESO Telescope. The carbon, nitrogen, and oxygen abundances, 12C∕13C ratios, and neutron-capture element abundances were determined using synthetic spectra, and the main atmospheric parameters and abundances of other chemical elements were determined from equivalent widths of spectral lines. Results. We have determined abundances of 23 chemical elements for 13 evolved stars and 12C∕13C ratios for six stars of IC 4756. The mean metallicity of this cluster, as determined from nine definite member stars, is very close to solar – [Fe/H] = − 0.02 ± 0.01. Abundances of carbon, nitrogen, and sodium exhibit alterations caused by extra-mixing: the mean 12C∕13C ratio is lowered to 19 ± 1.4, the C/N ratio is lowered to 0.79 ± 0.05, and the mean [Na/Fe] value, corrected for deviations from the local thermodynamical equilibrium encountered, is enhanced by 0.14 ± 0.05 dex. We compared our results to those by other authors and theoretical models. Conclusions. Comparison of the α-element results with the theoretical models shows that they follow the thin disc α-element trends. Being relatively young (~ 800 Myr), the open cluster IC 4756 displays a moderate enrichment of s-process-dominated chemical elements compared to the Galactic thin disc model and confirms the enrichment of s-process-dominated elements in young open clusters compared to the older ones. The r-process-dominated element europium abundance agrees with the thin disc abundance. From the comparison of our results for mixing-sensitive chemical elements and the theoretical models, we can see that the mean values of 12C∕13C, C/N, and [Na/Fe] ratios lie between the model with only the thermohaline extra-mixing included and the model which also includes the rotation-induced mixing. The rotation was most probably smaller in the investigated IC 4756 stars than 30% of the critical rotation velocity when they were on the main sequence.


2017 ◽  
Vol 4 (8) ◽  
pp. 170192 ◽  
Author(s):  
Maurizio Salaris ◽  
Santi Cassisi

Stellar evolution computations provide the foundation of several methods applied to study the evolutionary properties of stars and stellar populations, both Galactic and extragalactic. The accuracy of the results obtained with these techniques is linked to the accuracy of the stellar models, and in this context the correct treatment of the transport of chemical elements is crucial. Unfortunately, in many respects calculations of the evolution of the chemical abundance profiles in stars are still affected by sometimes sizable uncertainties. Here, we review the various mechanisms of element transport included in the current generation of stellar evolution calculations, how they are implemented, the free parameters and uncertainties involved, the impact on the models and the observational constraints.


2012 ◽  
Vol 29 (1) ◽  
pp. 29-41 ◽  
Author(s):  
C. C. Worley ◽  
P. L. Cottrell

AbstractMedium-resolution (R ∼ 6500) spectra of 97 giant stars in the globu lar cluster 47 Tucanæ (47 Tuc) have been used to derive the C- and N-abundance sensitive index, δC, and to infer abundances of several key elements (Fe, Na, Si, Ca, Zr and Ba) for a sample of 13 of these stars with similar effective temperature ( Teff) and surface gravity (log g). These stars have stellar properties similar to the well-studied 47 Tuc giant star, Lee 2525, but with a range of CN excess (δC) values which are a measure of the CN abundance. The δC index is shown to be correlated with Na abundance for this sample, confirming previous studies. Fe, Ca, Si and the light and heavy s-process (slow neut ron capture) elements, Zr and Ba, respectively, have a narrow range of abundance values, indicative of a homogeneous abundance within this population of stars. The constancy of many element abundances (Fe, Si, Ca, Zr, Ba) and the δC and Na abundance correlation could imply that there has been a second era of star formation in this cluster that has revealed the products of CNO-cycle burning via hot bottom burning (depletion of C, enhancement of N and the production of Na for high δC population). But there is no overall metallicity change across the range of δC values at a given position in the HR diagram as has been seen in some other globular clusters.


2017 ◽  
Vol 13 (S334) ◽  
pp. 25-28
Author(s):  
Bruno Dias ◽  
Beatriz Barbuy ◽  
Ivo Saviane ◽  
Enrico V. Held ◽  
Gary Da Costa ◽  
...  

AbstractMilky Way globular clusters are excellent laboratories for stellar population detailed analysis that can be applied to extragalactic environments with the advent of the 40m-class telescopes like the ELT. The globular cluster population traces the early evolution of the Milky Way which is the field of Galactic archaeology. We present our GlObular clusTer Homogeneous Abundance Measurement (GOTHAM) survey. We derived radial velocities, Teff, log(g), [Fe/H], [Mg/Fe] for red giant stars in one third of all Galactic globular clusters that represent well the Milky Way globular cluster system in terms of metallicity, mass, reddening, and distance. Our method is based on low-resolution spectroscopy and is intrinsically reddening free and efficient even for faint stars. Our [Fe/H] determinations agree with high-resolution results to within 0.08 dex. The GOTHAM survey provides a new metallicity scale for Galactic globular clusters with a significant update of metallicities higher than [Fe/H] > -0.7. We show that the trend of [Mg/Fe] with metallicity is not constant as previously found, because now we have more metal-rich clusters. Moreover, peculiar clusters whose [Mg/Fe] does not match Galactic stars for a given metallicity are discussed. We also measured the CaII triplet index for all stars and we show that the different chemical evolution of Milky Way open clusters, field stars, and globular clusters implies different calibrations of calcium triplet to metallicity.


Sign in / Sign up

Export Citation Format

Share Document