scholarly journals Chemical element transport in stellar evolution models

2017 ◽  
Vol 4 (8) ◽  
pp. 170192 ◽  
Author(s):  
Maurizio Salaris ◽  
Santi Cassisi

Stellar evolution computations provide the foundation of several methods applied to study the evolutionary properties of stars and stellar populations, both Galactic and extragalactic. The accuracy of the results obtained with these techniques is linked to the accuracy of the stellar models, and in this context the correct treatment of the transport of chemical elements is crucial. Unfortunately, in many respects calculations of the evolution of the chemical abundance profiles in stars are still affected by sometimes sizable uncertainties. Here, we review the various mechanisms of element transport included in the current generation of stellar evolution calculations, how they are implemented, the free parameters and uncertainties involved, the impact on the models and the observational constraints.

2008 ◽  
Vol 4 (S256) ◽  
pp. 337-342
Author(s):  
Raphael Hirschi ◽  
Sylvia Ekström ◽  
Cyril Georgy ◽  
Georges Meynet ◽  
André Maeder

AbstractThe Magellanic Clouds are great laboratories to study the evolution of stars at two metallicities lower than solar. They provide excellent testbeds for stellar evolution theory and in particular for the impact of metallicity on stellar evolution. It is important to test stellar evolution models at metallicities lower than solar in order to use the models to predict the evolution and properties of the first stars. In these proceedings, after recalling the effects of metallicity, we present stellar evolution models including the effects of rotation at the Magellanic Clouds metallicities. We then compare the models to various observations (ratios of sub-groups of massive stars and supernovae, nitrogen surface enrichment and gamma-ray bursts) and show that the models including the effects of rotation reproduce most of the observational constraints.


Author(s):  
Radiy Kh. Gimaletdinov ◽  
Andrey A. Gulakov ◽  
Ildar Kh. Tukhvatulin

Problem Statement (Relevance): An urgent task of rolling mill operators includes minimizing the cost of manufactured products while ensuring the required quality. To accomplish the task, measures are being taken to optimize the rolling process aimed at increasing the duration of the rolling campaigns and reducing the number of roll regrinds. The performance of the rolls is influenced by the properties of the working layer material which determine wear resistance, formation and development of fire cracks, as well as resistance to metal sticking. Finishing mill rolls dictate the surface quality of the rolled steel. That is why it is important to make timely regrinds in order to completely remove the fire crack layer. The removal depth and the acceptable duration of the campaigns depend on the properties of the roll working layer material. To improve the properties of the rolls, the roll manufacturers need the actual roll operation data to be able to analyze how the chemical composition and the structure of the roll working layer is related to the roll performance. Such analysis will help improve the structure and properties of the materials used, as well as develop new ones. Objectives: The objective of this research is to understand how the chemical composition of the working layer of indefinite chilled cast iron rolls used in finishing mills dictates the roll performance, to evaluate the effect of each chemical element, and to determine what concentrations of the chemical elements could most effectively benefit the performance of indefinite chilled cast iron rolls. Methods Applied: The methods applied include building a database of the finishing mill indefinite chilled cast iron rolls and using artificial neural networks based on a dual-function algorithm. Originality: The authors built a neuromodel which can help understand the effect of the chemical composition of the roll working layer and predict the performance of indefinite chilled cast iron rolls. The authors studied the effect of carbon, silicon, manganese, chromium, nickel, molybdenum, vanadium, niobium and boron on the performance of indefinite chilled cast iron rolls. Findings: Graphic diagrams were built which demonstrate the effect of each chemical element on the performance of indefinite chilled cast iron rolls at constant concentrations of the remaining elements. The authors looked at the relationship between the chemical elements and the roll performance in terms of the impact of the former on the structure of indefinite chilled cast iron rolls. The effective concentrations of the chemical elements were also determined. Practical Relevance: The authors developed a new chemical composition of indefinite chilled cast iron to be used for the working layer of finishing mill rolls. As a result, a 12–14% increase in the roll performance was achieved.


2018 ◽  
Vol 621 ◽  
pp. A24 ◽  
Author(s):  
N. Lagarde ◽  
C. Reylé ◽  
A. C. Robin ◽  
G. Tautvaišienė ◽  
A. Drazdauskas ◽  
...  

Context. The Gaia-ESO Public Spectroscopic Survey using FLAMES at the VLT has obtained high-resolution UVES spectra for a large number of giant stars, allowing a determination of the abundances of the key chemical elements carbon and nitrogen at their surface. The surface abundances of these chemical species are known to change in stars during their evolution on the red giant branch (RGB) after the first dredge-up episode, as a result of the extra mixing phenomena. Aims. We investigate the effects of thermohaline mixing on C and N abundances using the first comparison between the Gaia-ESO survey [C/N] determinations with simulations of the observed fields using a model of stellar population synthesis. Methods. We explore the effects of thermohaline mixing on the chemical properties of giants through stellar evolutionary models computed with the stellar evolution code STAREVOL. We include these stellar evolution models in the Besançon Galaxy model to simulate the [C/N] distributions determined from the UVES spectra of the Gaia-ESO survey and to compare them with the observations. Results. Theoretical predictions including the effect of thermohaline mixing are in good agreement with the observations. However, the field stars in the Gaia-ESO survey with C and N abundance measurements have a metallicity close to solar, where the efficiency of thermohaline mixing is not very large. The C and N abundances derived by the Gaia-ESO survey in open and globular clusters clearly show the impact of thermohaline mixing at low metallicity, which explains the [C/N] value observed in lower mass and older giant stars. Using independent observations of carbon isotopic ratio in clump field stars and open clusters, we also confirm that thermohaline mixing should be taken into account to explain the behaviour of 12C/13C as a function of stellar age. Conclusions. Overall, the current model including thermohaline mixing is able to reproduce very well the C and N abundances over the whole metallicity range investigated by the Gaia-ESO survey data.


Author(s):  
Inna Yu. Tarmaeva ◽  
Anatoliy V. Skalny ◽  
Olga G. Bogdanova ◽  
Andrey R. Grabeklis ◽  
Alexandr I. Belykh

Introduction.The study of the elemental status of the population of individual regions of the Russian Federation with the purpose of scientific development and implementation of measures for elimination of revealed elementosis is a promising direction for preventive medicine.The aim of the studyis to study the elemental status of the adult able-bodied population of the Republic of Buryatia, which was part of the Siberian Federal district (SFD) until 2018.Materials and methods.The analysis was performed by inductively coupled plasma mass spectrometry (ICP-MS) on the basis of the accredited laboratory of “Center of biotic medicine”. (Moscow; ISO 9001: 2008 certificate 54Q10077 from 21.05.2010). The content of chemical elements in the hair of 130 adults (102 women and 28 men) aged 25–50 years was studied. This indicator serves as an indicator in assessing the impact of the environment on the human body. Methods of nonparametric statistics were used for mathematical processing of the data.Results.For women living in the Republic of Buryatia, the maximum values of Zn, increased levels of Cu, Li, Si were revealed; for men — the maximum values of Mg, Cr, Si, increased levels of P, Li, Se, V, Pb. Minimum values were found for P, Fe, V. Elemental status indicates a significant degree of prevalence of essential trace element deficiencies and electrolyte imbalance. The obtained data can be used as reference values for the content of chemical elements in the hair of adults living in the Republic of Buryatia.Conclusions:Elemental analysis of the population of the Republic of Buryatia indicates imbalances among the adult working-age population.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2621
Author(s):  
Aneta Bartkowska

The paper presents the results of a study of the microstructure, chemical composition, microhardness and corrosion resistance of Cr-B coatings produced on Vanadis 6 tool steel. In this study, chromium and boron were added to the steel surface using a laser alloying process. The main purpose of the study was to determine the impact of those chemical elements on surface properties. Chromium and boron as well as their mixtures were prepared in various proportions and then were applied on steel substrate in the form of precoat of 100 µm thickness. Depending on the type of precoat used and laser processing parameters, changes in microstructure and properties were observed. Coatings produced using precoat containing chromium and boron mixture were characterized by high microhardness (900 HV0.05–1300 HV0.005) while maintaining good corrosion resistance. It was also found that too low laser beam power contributed to the formation of cracks and porosity.


Author(s):  
Guglielmo Costa ◽  
Alessandro Bressan ◽  
Michela Mapelli ◽  
Paola Marigo ◽  
Giuliano Iorio ◽  
...  

Abstract Pair-instability (PI) is expected to open a gap in the mass spectrum of black holes (BHs) between ≈40 − 65 M⊙ and ≈120 M⊙. The existence of the mass gap is currently being challenged by the detection of GW190521, with a primary component mass of $85^{+21}_{-14}$ M⊙. Here, we investigate the main uncertainties on the PI mass gap: the 12C(α, γ)16O reaction rate and the H-rich envelope collapse. With the standard 12C(α, γ)16O rate, the lower edge of the mass gap can be 70 M⊙ if we allow for the collapse of the residual H-rich envelope at metallicity Z ≤ 0.0003. Adopting the uncertainties given by the starlib database, for models computed with the 12C(α, γ)16O rate −1 σ, we find that the PI mass gap ranges between ≈80 M⊙ and ≈150 M⊙. Stars with MZAMS > 110 M⊙ may experience a deep dredge-up episode during the core helium-burning phase, that extracts matter from the core enriching the envelope. As a consequence of the He-core mass reduction, a star with MZAMS = 160 M⊙ may avoid the PI and produce a BH of 150 M⊙. In the −2 σ case, the PI mass gap ranges from 92 M⊙ to 110 M⊙. Finally, in models computed with 12C(α, γ)16O −3 σ, the mass gap is completely removed by the dredge-up effect. The onset of this dredge-up is particularly sensitive to the assumed model for convection and mixing. The combined effect of H-rich envelope collapse and low 12C(α, γ)16O rate can lead to the formation of BHs with masses consistent with the primary component of GW190521.


2011 ◽  
Vol 305 (1-4) ◽  
pp. 329-336 ◽  
Author(s):  
Xiaoqiang Li ◽  
Nan Sun ◽  
John Dodson ◽  
Ming Ji ◽  
Keliang Zhao ◽  
...  

2018 ◽  
Vol 620 ◽  
pp. A168 ◽  
Author(s):  
G. Valle ◽  
M. Dell’Omodarme ◽  
P. G. Prada Moroni ◽  
S. Degl’Innocenti

Aims. We aim to perform a theoretical investigation on the direct impact of measurement errors in the observational constraints on the recovered age for stars in main sequence (MS) and red giant branch (RGB) phases. We assumed that a mix of classical (effective temperature Teff and metallicity [Fe/H]) and asteroseismic (Δν and νmax) constraints were available for the objects. Methods. Artificial stars were sampled from a reference isochrone and subjected to random Gaussian perturbation in their observational constraints to simulate observational errors. The ages of these synthetic objects were then recovered by means of a Monte Carlo Markov chains approach over a grid of pre-computed stellar models. To account for observational uncertainties the grid covers different values of initial helium abundance and mixing-length parameter, that act as nuisance parameters in the age estimation. Results. The obtained differences between the recovered and true ages were modelled against the errors in the observables. This procedure was performed by means of linear models and projection pursuit regression models. The first class of statistical models provides an easily generalizable result, whose robustness is checked with the second method. From linear models we find that no age error source dominates in all the evolutionary phases. Assuming typical observational uncertainties, for MS the most important error source in the reconstructed age is the effective temperature of the star. An offset of 75 K accounts for an underestimation of the stellar age from 0.4 to 0.6 Gyr for initial and terminal MS. An error of 2.5% in νmax resulted the second most important source of uncertainty accounting for about −0.3 Gyr. The 0.1 dex error in [Fe/H] resulted particularly important only at the end of the MS, producing an age error of −0.4 Gyr. For the RGB phase the dominant source of uncertainty is νmax, causing an underestimation of about 0.6 Gyr; the offset in the effective temperature and Δν caused respectively an underestimation and overestimation of 0.3 Gyr. We find that the inference from the linear model is a good proxy for that from projection pursuit regression models. Therefore, inference from linear models can be safely used thanks to its broader generalizability. Finally, we explored the impact on age estimates of adding the luminosity to the previously discussed observational constraints. To this purpose, we assumed – for computational reasons – a 2.5% error in luminosity, much lower than the average error in the Gaia DR2 catalogue. However, even in this optimistic case, the addition of the luminosity does not increase precision of age estimates. Moreover, the luminosity resulted as a major contributor to the variability in the estimated ages, accounting for an error of about −0.3 Gyr in the explored evolutionary phases.


2019 ◽  
Vol 55 (2) ◽  
pp. 161-175
Author(s):  
L. Hernández-Cervantes ◽  
B. Pérez-Rendón ◽  
A. Santillán ◽  
G. García-Segura ◽  
C. Rodríguez-Ibarra

In this work, we present models of massive stars between 15 and 23 M⊙ , with enhanced mass loss rates during the red supergiant phase. Our aim is to explore the impact of extreme red supergiant mass-loss on stellar evolution and on their circumstellar medium. We computed a set of numerical experiments, on the evolution of single stars with initial masses of 15, 18, 20 and, 23 M⊙ , and solar composition (Z = 0.014), using the numerical stellar code BEC. From these evolutionary models, we obtained time-dependent stellar wind parameters, that were used explicitly as inner boundary conditions in the hydrodynamical code ZEUS-3D, which simulates the gas dynamics in the circumstellar medium (CSM), thus coupling the stellar evolution to the dynamics of the CSM. We found that stars with extreme mass loss in the RSG phase behave as a larger mass stars.


2020 ◽  
Vol 500 (2) ◽  
pp. 2704-2710 ◽  
Author(s):  
Yun-Wei Yu ◽  
Yuan-Chuan Zou ◽  
Zi-Gao Dai ◽  
Wen-Fei Yu

ABSTRACT The association of FRB 200428 with an X-ray burst (XRB) from the Galactic magnetar SGR 1935+2154 offers important implications for the physical processes responsible for the fast radio burst (FRB) phenomena. By assuming that the XRB emission is produced in the magnetosphere, we investigate the possibility that the FRB emission is produced by shock-powered synchrotron maser (SM), which is phenomenologically described with a number of free parameters. The observational constraints on the model parameters indicate that the model can in principle be consistent with the FRB 200428 observations, if the ejecta lunched by magnetar activities can have appropriate ingredients and structures and the shock processes occur on the line of sight. To be specific, a complete burst ejecta should consist of an ultra-relativistic and extremely highly collimated e± component and a sub-relativistic and wide-spreading baryonic component. The internal shocks producing the FRB emission arise from a collision between the e± ejecta and the remnant of a previous baryonic ejecta at the same direction. The parameter constraints depend on the uncertain spectrum and efficiency of the SM emission. While the spectrum is tentatively described by a spectral index of −2, we estimate the emission efficiency to be around 10−4 by requiring that the synchrotron emission of the shocked material cannot be much brighter than the magnetosphere XRB emission.


Sign in / Sign up

Export Citation Format

Share Document