scholarly journals Distances from the tip of the red giant branch to the dwarf galaxies dw1335-29 and dw1340-30 in the Centaurus group

2018 ◽  
Vol 615 ◽  
pp. A96 ◽  
Author(s):  
Oliver Müller ◽  
Marina Rejkuba ◽  
Helmut Jerjen

Context. The abundance and spatial distribution of dwarf galaxies are excellent empirical benchmarks against which to test models of structure formation on small scales. The nearby Centaurus group, with its two subgroups centered on Cen A and M 83, stands out as an important alternative to the Local Group for scrutinizing cosmological model predictions in a group of galaxies context. Aims. We have obtained deep optical images of three recently discovered M 83 satellite galaxy candidates with the FORS2 instrument mounted on the Very Large Telescope. We aim to confirm their group membership and study their stellar population. Methods. Deep V I-band photometry was used to resolve the brightest stars in our targets. Artificial star tests are performed to estimate the completeness and uncertainties of the photometry. The color-magnitude diagrams reveal the red giant branch (RGB) stars, allowing us to use the Sobel edge detection method to measure the magnitude of the RGB tip and thus derive distances and group membership for our targets. The mean metallicity of the dwarf galaxies were further determined by fitting BASTI model isochrones to the mean RGB locus. Results. We confirm the two candidates, dw1335-29 and dw1340-30, to be dwarf satellites of the M 83 subgroup, with estimated distances of 5.03 ± 0.24 Mpc and 5.06 ± 0.24 Mpc, respectively. Their respective mean metallicities of ⟨[Fe/H]⟩ = −1.79 ± 0.4 and ⟨[Fe/H]⟩ = −2.27 ± 0.4 are consistent with the metallicity–luminosity relation for dwarf galaxies. The third candidate, dw1325-33, could not be resolved into stars due to insufficiently deep images, implying its distance must be larger than 5.3 Mpc. Using the two newly derived distances we assess the spatial distribution of the galaxies in the M 83 subgroup and discuss a potential plane-of-satellites around M 83.

2020 ◽  
Vol 635 ◽  
pp. A152 ◽  
Author(s):  
S. Taibi ◽  
G. Battaglia ◽  
M. Rejkuba ◽  
R. Leaman ◽  
N. Kacharov ◽  
...  

Context. Isolated local group (LG) dwarf galaxies have evolved most or all of their life unaffected by interactions with the large LG spirals and therefore offer the opportunity to learn about the intrinsic characteristics of this class of objects. Aims. Our aim is to explore the internal kinematic and metallicity properties of one of the three isolated LG early-type dwarf galaxies, the Tucana dwarf spheroidal. This is an intriguing system, as it has been found in the literature to have an internal rotation of up to 16 km s−1, a much higher velocity dispersion than dwarf spheroidals of similar luminosity, and a possible exception to the too-big-too-fail problem. Methods. We present the results of a new spectroscopic dataset that we procured from the Very Large Telescope (VLT) taken with the FORS2 instrument in the region of the Ca II triplet for 50 candidate red giant branch stars in the direction of the Tucana dwarf spheroidal. These yielded line-of-sight (l.o.s.) velocity and metallicity ([Fe/H]) measurements of 39 effective members that double the number of Tucana’s stars with such measurements. In addition, we re-reduce and include in our analysis the other two spectroscopic datasets presented in the literature, the VLT/FORS2 sample by Fraternali et al. (2009, A&A, 499, 121), and the VLT/FLAMES one from Gregory et al. (2019, MNRAS, 485, 2010). Results. Across the various datasets analyzed, we consistently measure a l.o.s. systemic velocity of 180 ± 1.3 km s−1 and find that a dispersion-only model is moderately favored over models that also account for internal rotation. Our best estimate of the internal l.o.s. velocity dispersion is 6.2−1.3+1.6 km s−1, much smaller than the values reported in the literature and in line with similarly luminous dwarf spheroidals; this is consistent with NFW halos of circular velocities < 30 km s−1. Therefore, Tucana does not appear to be an exception to the too-big-to-fail problem, nor does it appear to reside in a dark matter halo much more massive than those of its siblings. As for the metallicity properties, we do not find anything unusual; there are hints of the presence of a metallicity gradient, but more data are needed to pinpoint its presence.


2012 ◽  
Vol 8 (S289) ◽  
pp. 218-221
Author(s):  
Dmitry Makarov

AbstractThe luminosity of the tip of the red giant branch (TRGB) provides an excellent measure of galaxy distances and is easily determined in the resolved images of nearby galaxies observed with the Hubble Space Telescope (HST). We use a maximum-likelihood algorithm to locate the TRGB in galaxy colour–magnitude diagrams. The algorithm is optimized by introducing reliable photometric errors and a completeness characterization determined based on artificial-star experiments. The program has been tested extensively using Monte Carlo simulations, artificial galaxies, and a sample of nearby dwarf galaxies observed with the HST's WFPC2 and ACS cameras. Our procedure is shown to be reliable, yield good accuracy, and does not introduce any systematic errors. The methodology is especially useful in cases in which the TRGB approaches the photometric limit and/or the RGB is poorly populated.


2018 ◽  
Vol 14 (S344) ◽  
pp. 94-95
Author(s):  
Yutaka Komiyama

AbstractWe have carried out a wide and deep imaging survey for the Local Group dwarf spheroidal galaxy Ursa Minor (UMi) using Hyper Suprime-Cam (HSC). The data cover out beyond the nominal tidal radius down to ~25 mag in i band, which is ~2 mag below the main sequence turn-off point. The structural parameters of UMi are derived using red giant branch (RGB) stars and sub-giant branch (SGB) stars, and the tidal radius is suggested to be larger than those estimated by the previous studies. It is also found that the distribution of bluer RGB/SGB stars is more extended than that of redder RGB/SGB stars. The fraction of binary systems is estimated to be ~0.4 from the morphology of the main sequences.


2018 ◽  
Vol 616 ◽  
pp. A24 ◽  
Author(s):  
C Gehan ◽  
B. Mosser ◽  
E. Michel ◽  
R. Samadi ◽  
T. Kallinger

Context. Asteroseismology allows us to probe stellar interiors. In the case of red giant stars, conditions in the stellar interior are such as to allow for the existence of mixed modes, consisting in a coupling between gravity waves in the radiative interior and pressure waves in the convective envelope. Mixed modes can thus be used to probe the physical conditions in red giant cores. However, we still need to identify the physical mechanisms that transport angular momentum inside red giants, leading to the slow-down observed for red giant core rotation. Thus large-scale measurements of red giant core rotation are of prime importance to obtain tighter constraints on the efficiency of the internal angular momentum transport, and to study how this efficiency changes with stellar parameters. Aims. This work aims at identifying the components of the rotational multiplets for dipole mixed modes in a large number of red giant oscillation spectra observed by Kepler. Such identification provides us with a direct measurement of the red giant mean core rotation. Methods. We compute stretched spectra that mimic the regular pattern of pure dipole gravity modes. Mixed modes with the same azimuthal order are expected to be almost equally spaced in stretched period, with a spacing equal to the pure dipole gravity mode period spacing. The departure from this regular pattern allows us to disentangle the various rotational components and therefore to determine the mean core rotation rates of red giants. Results. We automatically identify the rotational multiplet components of 1183 stars on the red giant branch with a success rate of 69% with respect to our initial sample. As no information on the internal rotation can be deduced for stars seen pole-on, we obtain mean core rotation measurements for 875 red giant branch stars. This large sample includes stars with a mass as large as 2.5 M⊙, allowing us to test the dependence of the core slow-down rate on the stellar mass. Conclusions. Disentangling rotational splittings from mixed modes is now possible in an automated way for stars on the red giant branch, even for the most complicated cases, where the rotational splittings exceed half the mixed-mode spacing. This work on a large sample allows us to refine previous measurements of the evolution of the mean core rotation on the red giant branch. Rather than a slight slow-down, our results suggest rotation is constant along the red giant branch, with values independent of the mass.


2019 ◽  
Author(s):  
Kathryn Nicole Graves ◽  
James Antony ◽  
Nicholas Turk-Browne

While navigating the world, we pick up on patterns of where things tend to appear. According to theories of memory and studies of animal behavior, knowledge of these patterns emerges gradually over days or weeks, via consolidation of individual navigation episodes. Here we discover that navigation patterns can also be extracted online, prior to the opportunity for offline consolidation, as a result of rapid statistical learning. Human participants navigated a virtual water maze in which platform locations were drawn from a spatial distribution. Within a single session, participants increasingly navigated through the mean of the distribution. This behavior was better simulated by random walks from a model with only an explicit representation of the current mean, compared to a model with only memory for the individual platform locations. These results suggest that participants rapidly summarized the underlying spatial distribution and used this statistical knowledge to guide future navigation.


2021 ◽  
Vol 64 (6) ◽  
pp. 1977-1987
Author(s):  
Zhihong Zhang ◽  
Heping Zhu ◽  
Zhiming Wei ◽  
Ramon Salcedo

HighlightsA newly developed premixing in-line injection system attached to a variable-rate orchard sprayer was evaluated.Tests were conducted to verify the in-line injection system performance using a vertical spray patternator.Concentration accuracy and spatial distribution uniformity were determined with a fluorescent tracer.Uniform spray mixtures were obtained for different spray viscosities and duty cycle combinations.Abstract. Pesticide spray application efficiency is highly dependent on the chemical concentration accuracy and spatial distribution uniformity. In this study, the performance of a newly developed premixing in-line injection system was evaluated when it was attached to a laser-guided, pulse width modulated (PWM), variable-rate orchard sprayer. The chemical concentration accuracy was determined with respect to spray deposition with a fluorescent tracer, and the spatial distribution uniformity was determined with spray deposits at different heights on a vertical spray patternator. Outdoor tests were conducted with 27 combinations of target chemical concentration (1.0%, 1.5%, and 2.0%), viscosity of the simulated pesticide (1.0, 12.0, and 24.0 mPa·s), and various spray outputs manipulated with PWM duty cycles. For each injection loop, the amounts of the chemical concentrate and water discharged into the mixing line were measured separately in response to preset target concentrations. The results showed that the measured concentrations were consistent across the patternator heights, spray viscosities, and duty cycle combinations. For all treatments, the mean absolute percentage error (MAPE) of the measured concentration was 6.96%, indicating that the concentration accuracy of the system was acceptable. The mean coefficient of variation was 3.35%, indicating that the spatial distribution uniformity of the system was in the desirable range. In addition, there was little variation in chemical concentration for spray mixtures collected at different heights on the patternator. Thus, the premixing in-line injection system could adequately dispense chemical concentrate and water to produce accurate concentrations and uniform spray mixtures for variable-rate nozzles to discharge to targets. Keywords: Environment protection, Precision pesticide application, Laser-guided sprayer, Tank mixture disposal, Specialty crop.


Author(s):  
Vasco Menconi ◽  
Paolo Pastorino ◽  
Ivana Momo ◽  
Davide Mugetti ◽  
Maria Cristina Bona ◽  
...  

Dibothriocephalus latus (Linnaeus, 1758) (Cestoda: Diphyllobothriidea; syn. Diphyllobothrium latum), is a fish-borne zoonotic parasite responsible for diphyllobothriasis in humans. Although D. latus has long been studied, many aspects of its epidemiology and distribution remain unknown. The aim of this study was to investigate the prevalence, mean intensity of infestation, and mean abundance of plerocercoid larvae of D. latus in European perch (Perca fluviatilis) and its spatial distribution in three commercial fishing areas in Lake Iseo (Northern Italy). A total of 598 specimens of P. fluviatilis were caught in 2019. The total prevalence of D. latus was 6.5%. However, there were significant differences between areas (10.2% North; 7.3% Center; 1.5% South) (Chi-square test, p = 0.0018). The mean intensity of infestation ranged from 1 larva in southern area to 1.2 larvae in both the central and northern (Pisogne) areas. In addition, the mean abundance ranged from 0.02 in the southern area to 0.26 in the northern area (Pisogne). The total number of larvae (anterior dorsal—AD = 21; anterior ventral—AV = 1; posterior dorsal—PD = 15; posterior ventral—PV = 5) differed significantly between the four anatomical quadrants (Kruskal–Wallis test; p = 0.0001). The prevalence of D. latus plerocercoid larvae in European perch from Lake Iseo has long been investigated, but without an appropriate sampling design. With the present study, a broader analysis in spatial distribution has been added to the existing literature, revealing new information about D. latus distribution and occurrence in Lake Iseo, with new data that will be useful for health authorities and future studies.


2018 ◽  
Vol 618 ◽  
pp. A134 ◽  
Author(s):  
A. Mucciarelli ◽  
M. Salaris ◽  
L. Monaco ◽  
P. Bonifacio ◽  
X. Fu ◽  
...  

We present Li, Na, Al, and Fe abundances of 199 lower red giant branch star members of the stellar system Omega Centauri, using high-resolution spectra acquired with FLAMES at the Very Large Telescope. The A(Li) distribution is peaked at A(Li) ∼ 1 dex with a prominent tail towards lower values. The peak of the distribution well agrees with the lithium abundances measured in lower red giant branch stars in globular clusters and Galactic field stars. Stars with A(Li) ∼ 1 dex are found at metallicities lower than [Fe/H] ∼ –1.3 dex but they disappear at higher metallicities. On the other hand, Li-poor stars are found at all metallicities. The most metal-poor stars exhibit a clear Li–Na anti-correlation, where about 30% of the sample have A(Li) lower than ∼0.8 dex, while these stars represent a small fraction of normal globular clusters. Most of the stars with [Fe/H] > –1.6 dex are Li poor and Na rich. The Li depletion measured in these stars is not observed in globular clusters with similar metallicities and we demonstrate that it is not caused by the proposed helium enhancements and/or young ages. Hence, these stars formed from a gas already depleted in lithium. Finally, we note that Omega Centauri includes all the populations (Li-normal/Na-normal, Li-normal/Na-rich, and Li-poor/Na-rich stars) observed, to a lesser extent, in mono-metallic GCs.


2019 ◽  
Vol 631 ◽  
pp. A171 ◽  
Author(s):  
Á. Skúladóttir ◽  
C. J. Hansen ◽  
S. Salvadori ◽  
A. Choplin

The heavy elements (Z >  30) are created in neutron (n)-capture processes that are predicted to happen at vastly different nucleosynthetic sites. To study these processes in an environment different from the Milky Way, we targeted the n-capture elements in red giant branch stars in the Sculptor dwarf spheroidal galaxy. Using ESO VLT/FLAMES spectra, we measured the chemical abundances of Y, Ba, La, Nd, and Eu in 98 stars covering the metalliticy range −2.4 < [Fe/H] < −0.9. This is the first paper in a series about the n-capture elements in dwarf galaxies, and here we focus on the relative and absolute timescales of the slow (s)- and rapid (r)-processes in Sculptor. From the abundances of the s-process element Ba and the r-process element Eu, it is clear that the r-process enrichment occurred throughout the entire chemical evolution history of Sculptor. Furthermore, there is no evidence for the r-process to be significantly delayed in time relative to core-collapse supernovae. Neutron star mergers are therefore unlikely the dominant (or only) nucleosynthetic site of the r-process. However, the products of the s-process only become apparent at [Fe/H] ≈ −2 in Sculptor, and the s-process becomes the dominant source of Ba at [Fe/H] ≳ −2. We tested the use of [Y/Mg] and [Ba/Mg] as chemical clocks in Sculptor. Similarly to what is observed in the Milky Way, [Y/Mg] and [Ba/Mg] increase towards younger ages. However, there is an offset in the trends, where the abundance ratios of [Y/Mg] in Sculptor are significantly lower than those of the Milky Way at any given age. This is most likely caused by metallicity dependence of yields from the s-process, as well as by a different relative contribution of the s-process to core-collapse supernovae in these galaxies. Comparisons of our results with data of the Milky Way and the Fornax dwarf spheroidal galaxy furthermore show that these chemical clocks depend on both metallicity and environment.


2019 ◽  
Vol 629 ◽  
pp. L2 ◽  
Author(s):  
Oliver Müller ◽  
Rodrigo Ibata ◽  
Marina Rejkuba ◽  
Lorenzo Posti

Dwarf galaxies are key objects for small-scale cosmological tests like the abundance problems or the planes-of-satellites problem. A crucial task is therefore to get accurate information for as many nearby dwarf galaxies as possible. Using extremely deep, ground-based V and i-band Subaru Suprime Cam photometry with a completeness of i = 27 mag, we measure the distance of the dwarf galaxy [TT2009] 25 using the tip of the red giant branch as a standard candle. This dwarf resides in the field around the Milky Way-analog NGC 891. Using a Bayesian approach, we measure a distance of 10.28−1.73+1.17 Mpc, which is consistent with the distance of NGC 891, and thus confirm it as a member of NGC 891. The dwarf galaxy follows the scaling relations defined by the Local Group dwarfs. We do not find an extended stellar halo around [TT2009] 25. In the small field of view of 100 kpc covered by the survey, only one bright dwarf galaxy and the giant stream are apparent. This is comparable to the Milky Way, where one bright dwarf resides in the same volume, as well as the Sagittarius stream – excluding satellites which are farther away but would be projected in the line-of-sight. It is thus imperative to survey for additional dwarf galaxies in a larger area around NGC 891 to test the abundance of dwarf galaxies and compare this to the number of satellites around the Milky Way.


Sign in / Sign up

Export Citation Format

Share Document