scholarly journals SOPHIE velocimetry of Kepler transit candidates

2018 ◽  
Vol 615 ◽  
pp. A90 ◽  
Author(s):  
J. M. Almenara ◽  
R. F. Díaz ◽  
G. Hébrard ◽  
R. Mardling ◽  
C. Damiani ◽  
...  

Kepler-419 is a planetary system discovered by the Kepler photometry which is known to harbour two massive giant planets: an inner 3 MJ transiting planet with a 69.8-day period, highly eccentric orbit, and an outer 7.5 MJ non-transiting planet predicted from the transit-timing variations (TTVs) of the inner planet b to have a 675-day period, moderately eccentric orbit. Here we present new radial velocity (RV) measurements secured over more than two years with the SOPHIE spectrograph, where both planets are clearly detected. The RV data is modelled together with the Kepler photometry using a photodynamical model. The inclusion of velocity information breaks the MR−3 degeneracy inherent in timing data alone, allowing us to measure the absolute stellar and planetary radii and masses. With uncertainties of 12 and 13% for the stellar and inner planet radii, and 35, 24, and 35% for the masses of the star, planet b, and planet c, respectively, these measurements are the most precise to date for a single host star system using this technique. The transiting planet mass is determined at better precision than the star mass. This shows that modelling the radial velocities and the light curve together in systems of dynamically interacting planets provides a way of characterising both the star and the planets without being limited by knowledge of the star. On the other hand, the period ratio and eccentricities place the Kepler-419 system in a sweet spot; had around twice as many transits been observed, the mass of the transiting planet could have been measured using its own TTVs. Finally, the origin of the Kepler-419 system is discussed. We show that the system is near a coplanar high-eccentricity secular fixed point, related to the alignment of the orbits, which has prevented the inner orbit from circularising. For most other relative apsidal orientations, planet b’s orbit would be circular with a semi-major axis of 0.03 au. This suggests a mechanism for forming hot Jupiters in multiplanetary systems without the need of high mutual inclinations.

2004 ◽  
Vol 202 ◽  
pp. 84-86 ◽  
Author(s):  
M. Mayor ◽  
D. Naef ◽  
F. Pepe ◽  
D. Queloz ◽  
N. C. Santos ◽  
...  

We report the discovery of an extrasolar planetary system with two Saturnian planets around the star HD 83443. The new planetary system is unusual by more than one aspect, as it contains two very low–mass gaseous giant planets, both on very tight orbits. Among the planets detected so far, the inner planet has the smallest semi–major axis (0.038 AU) and period (2.985 days) whereas the outer planet is the lightest one with m2 sin i = 0.53 MSat. A preliminary dynamical study confirms the stability of the system.


2010 ◽  
Vol 6 (S276) ◽  
pp. 225-229 ◽  
Author(s):  
Sourav Chatterjee ◽  
Eric B. Ford ◽  
Frederic A. Rasio

AbstractRecent observations have revealed two new classes of planetary orbits. Rossiter-Mclaughlin (RM) measurements have revealed hot Jupiters in high-obliquity orbits. In addition, direct-imaging has discovered giant planets at large (~ 100 AU) separations via direct-imaging technique. Simple-minded disk-migration scenarios are inconsistent with the high-inclination (and even retrograde) orbits as seen in recent RM measurements. Furthermore, forming giant planets at large semi-major axis (a) may be challenging in the core-accretion paradigm. We perform many N-body simulations to explore the two above-mentioned orbital architectures. Planet–planet scattering in a multi-planet system can naturally excite orbital inclinations. Planets can also get scattered to large distances. Large-a planetary orbits created from planet–planet scattering are expected to have high eccentricities (e). Theoretical models predict that the observed long-period planets, such as Fomalhaut-b have moderate e ≈ 0.3. Interestingly, these are also in systems with disks. We find that if a massive-enough outer disk is present, a scattered planet may be circularized at large a via dynamical friction from the disk and repeated scattering of the disk particles.


1999 ◽  
Vol 172 ◽  
pp. 441-442
Author(s):  
J.R. Donnison

Progress has been made in understanding the stability of hierarchical three-body systems where the third body moves on an approximately Keplerian orbit about the centre of mass of the binary, at a distance large compared to the binary separation. Harrington (1968,1969) showed analytically that provided the third body was sufficiently distant from the binary no secular terms appeared in the semi-major axis and the system was stable. Harrington (1972,1975,1977) established numerically a critical minimum separation distance (or period) for a stable system in terms of the masses, unaffected by the relative inclinations of the orbits, except for angles close to 90°. Most subsequent investigations have therefore used planar configurations. Graziani & Black (1981), Black (1982) and Pendleton & Black (1983) again using long-term integration of the orbits obtained a criterion for high and low mass binaries. Donnison & Mikulskis (1992,1994,1995) carried out numerical integrations on prograde, retrogade, planetary and stellar triple systems and found for prograde systems very good quantitative agreement with the c2H method. Eggleton & Kieselva (1995) suggested a critical distance ratio approximation determined by the masses in the system. Systems with eccentric orbits are covered using the period ratio determined by Kepler’s third law.


1978 ◽  
Vol 41 ◽  
pp. 15-32 ◽  
Author(s):  
L. Duriez

AbstractIn order to improve the determination of the mixed terms in classical theories, we show how these terms may be derived from a general theory developed with the same variables (of a keplerian nature). We find that the general theory of the first order in the masses already allows us to develop the mixed terms which appear at the second order in the classical theory. We also show that a part of the constant perturbation of the semi-major axis introduced in the classical theory is present in the general theory as very long-period terms; by developing these terms in powers of time, they would be equivalent to the appearance of very small secular terms (in t, t2, …) in the perturbation of the semi-major axes from the second order in the masses. The short period terms of the classical theory are found the same in the general theory, but without the numerical substitution of the values of the variables.


2015 ◽  
Vol 10 (S314) ◽  
pp. 220-225
Author(s):  
Eric L. Nielsen ◽  
Michael C. Liu ◽  
Zahed Wahhaj ◽  
Beth A. Biller ◽  
Thomas L. Hayward ◽  
...  

AbstractWhile more and more long-period giant planets are discovered by direct imaging, the distribution of planets at these separations (≳5 AU) has remained largely uncertain, especially compared to planets in the inner regions of solar systems probed by RV and transit techniques. The low frequency, the detection challenges, and heterogeneous samples make determining the mass and orbit distributions of directly imaged planets at the end of a survey difficult. By utilizing Monte Carlo methods that incorporate the age, distance, and spectral type of each target, we can use all stars in the survey, not just those with detected planets, to learn about the underlying population. We have produced upper limits and direct measurements of the frequency of these planets with the most recent generation of direct imaging surveys. The Gemini NICI Planet-Finding Campaign observed 220 young, nearby stars at a median H-band contrast of 14.5 magnitudes at 1”, representing the largest, deepest search for exoplanets by the completion of the survey. The Gemini Planet Imager Exoplanet Survey is in the process of surveying 600 stars, pushing these contrasts to a few tenths of an arcsecond from the star. With the advent of large surveys (many hundreds of stars) using advanced planet-imagers we gain the ability to move beyond measuring the frequency of wide-separation giant planets and to simultaneously determine the distribution as a function of planet mass, semi-major axis, and stellar mass, and so directly test models of planet formation and evolution.


2003 ◽  
Vol 12 (08) ◽  
pp. 1399-1414 ◽  
Author(s):  
İ. SAFFET YEŞİLYURT ◽  
E. NİHAL ERCAN ◽  
A. DEL POPOLO

In the current paper, we further improved the model for the migration of planets introduced and extended to time-dependent planetesimal accretion disks by Del Popolo. In the current study, the assumption of Del Popolo, that the surface density in planetesimals is proportional to that of gas, is relaxed. In order to obtain the evolution of planetesimal density, we use a method developed by Stepinski and Valageas which is able to simultaneously follow the evolution of gas and solid particles for up to 107 years. Then, the disk model is coupled to migration model introduced by Del Popolo in order to obtain the migration rate of the planet in the planetesimal. We find that the properties of solids known to exist in protoplanetary systems, together with reasonable density profiles for the disk, lead to a characteristic radius in the range 0.03–0.2 AU for the final semi-major axis of the giant planet.Hence our model can explain the properties of discovered extrasolar giant planets.


2007 ◽  
Vol 3 (S249) ◽  
pp. 331-346
Author(s):  
Frédéric S. Masset

AbstractTides come from the fact that different parts of a system do not fall in exactly the same way in a non-uniform gravity field. In the case of a protoplanetary disk perturbed by an orbiting, prograde protoplanet, the protoplanet tides raise a wake in the disk which causes the orbital elements of the planet to change over time. The most spectacular result of this process is a change in the protoplanet's semi-major axis, which can decrease by orders of magnitude on timescales shorter than the disk lifetime. This drift in the semi-major axis is called planetary migration. In a first part, we describe how the planet and disk exchange angular momentum and energy at the Lindblad and corotation resonances. Next we review the various types of planetary migration that have so far been contemplated: type I migration, which corresponds to low-mass planets (less than a few Earth masses) triggering a linear disk response; type II migration, which corresponds to massive planets (typically at least one Jupiter mass) that open up a gap in the disk; “runaway” or type III migration, which corresponds to sub-giant planets that orbit in massive disks; and stochastic or diffusive migration, which is the migration mode of low- or intermediate-mass planets embedded in turbulent disks. Lastly, we present some recent results in the field of planetary migration.


2013 ◽  
Vol 558 ◽  
pp. A109 ◽  
Author(s):  
Y. Alibert ◽  
F. Carron ◽  
A. Fortier ◽  
S. Pfyffer ◽  
W. Benz ◽  
...  

2005 ◽  
Vol 13 ◽  
pp. 467-467
Author(s):  
Charles Alcock

Large scale photometric surveys can deliver very large numbers of eclipsing binary stars. It is not presently possible to obtain radial velocity information for more than a small fraction of these. We have made some progress in the estimation of the statistical distributions of orbital elements (including semi-major axis and eccentricity) in the MACHO Project catalog of eclipsing binary stars. We see the well-known tendency to circularization in short period orbits and also detect late tidal circularization during the giant phase. The extension of these techniques to newer surveys will also be discussed.


2007 ◽  
Vol 3 (S249) ◽  
pp. 309-312 ◽  
Author(s):  
Xiaojia Zhang ◽  
Katherine Kretke ◽  
D. N. C. Lin

AbstractSuppression of type I migration is essential for the retention of protoplanetary cores which are sufficiently massive to accrete gas in their nascent disks and evolve into gas giant planets. We explore here the possibility that special disk properties at the snow line may be the dominant process which stalled the type I migration. We simply use a 1-D model to calculate the torque with linear formula and find that, if the surface density jump near snowline is great enough, the migration can be efficiently slowed down or even halted. This mechanism offers an explanation to the observed peak, at 2–3 AU, in the extra solar planets' semi major axis distribution.


Sign in / Sign up

Export Citation Format

Share Document