scholarly journals How planet–planet scattering can create high-inclination as well as long-period orbits

2010 ◽  
Vol 6 (S276) ◽  
pp. 225-229 ◽  
Author(s):  
Sourav Chatterjee ◽  
Eric B. Ford ◽  
Frederic A. Rasio

AbstractRecent observations have revealed two new classes of planetary orbits. Rossiter-Mclaughlin (RM) measurements have revealed hot Jupiters in high-obliquity orbits. In addition, direct-imaging has discovered giant planets at large (~ 100 AU) separations via direct-imaging technique. Simple-minded disk-migration scenarios are inconsistent with the high-inclination (and even retrograde) orbits as seen in recent RM measurements. Furthermore, forming giant planets at large semi-major axis (a) may be challenging in the core-accretion paradigm. We perform many N-body simulations to explore the two above-mentioned orbital architectures. Planet–planet scattering in a multi-planet system can naturally excite orbital inclinations. Planets can also get scattered to large distances. Large-a planetary orbits created from planet–planet scattering are expected to have high eccentricities (e). Theoretical models predict that the observed long-period planets, such as Fomalhaut-b have moderate e ≈ 0.3. Interestingly, these are also in systems with disks. We find that if a massive-enough outer disk is present, a scattered planet may be circularized at large a via dynamical friction from the disk and repeated scattering of the disk particles.

2018 ◽  
Vol 615 ◽  
pp. A90 ◽  
Author(s):  
J. M. Almenara ◽  
R. F. Díaz ◽  
G. Hébrard ◽  
R. Mardling ◽  
C. Damiani ◽  
...  

Kepler-419 is a planetary system discovered by the Kepler photometry which is known to harbour two massive giant planets: an inner 3 MJ transiting planet with a 69.8-day period, highly eccentric orbit, and an outer 7.5 MJ non-transiting planet predicted from the transit-timing variations (TTVs) of the inner planet b to have a 675-day period, moderately eccentric orbit. Here we present new radial velocity (RV) measurements secured over more than two years with the SOPHIE spectrograph, where both planets are clearly detected. The RV data is modelled together with the Kepler photometry using a photodynamical model. The inclusion of velocity information breaks the MR−3 degeneracy inherent in timing data alone, allowing us to measure the absolute stellar and planetary radii and masses. With uncertainties of 12 and 13% for the stellar and inner planet radii, and 35, 24, and 35% for the masses of the star, planet b, and planet c, respectively, these measurements are the most precise to date for a single host star system using this technique. The transiting planet mass is determined at better precision than the star mass. This shows that modelling the radial velocities and the light curve together in systems of dynamically interacting planets provides a way of characterising both the star and the planets without being limited by knowledge of the star. On the other hand, the period ratio and eccentricities place the Kepler-419 system in a sweet spot; had around twice as many transits been observed, the mass of the transiting planet could have been measured using its own TTVs. Finally, the origin of the Kepler-419 system is discussed. We show that the system is near a coplanar high-eccentricity secular fixed point, related to the alignment of the orbits, which has prevented the inner orbit from circularising. For most other relative apsidal orientations, planet b’s orbit would be circular with a semi-major axis of 0.03 au. This suggests a mechanism for forming hot Jupiters in multiplanetary systems without the need of high mutual inclinations.


2015 ◽  
Vol 10 (S314) ◽  
pp. 220-225
Author(s):  
Eric L. Nielsen ◽  
Michael C. Liu ◽  
Zahed Wahhaj ◽  
Beth A. Biller ◽  
Thomas L. Hayward ◽  
...  

AbstractWhile more and more long-period giant planets are discovered by direct imaging, the distribution of planets at these separations (≳5 AU) has remained largely uncertain, especially compared to planets in the inner regions of solar systems probed by RV and transit techniques. The low frequency, the detection challenges, and heterogeneous samples make determining the mass and orbit distributions of directly imaged planets at the end of a survey difficult. By utilizing Monte Carlo methods that incorporate the age, distance, and spectral type of each target, we can use all stars in the survey, not just those with detected planets, to learn about the underlying population. We have produced upper limits and direct measurements of the frequency of these planets with the most recent generation of direct imaging surveys. The Gemini NICI Planet-Finding Campaign observed 220 young, nearby stars at a median H-band contrast of 14.5 magnitudes at 1”, representing the largest, deepest search for exoplanets by the completion of the survey. The Gemini Planet Imager Exoplanet Survey is in the process of surveying 600 stars, pushing these contrasts to a few tenths of an arcsecond from the star. With the advent of large surveys (many hundreds of stars) using advanced planet-imagers we gain the ability to move beyond measuring the frequency of wide-separation giant planets and to simultaneously determine the distribution as a function of planet mass, semi-major axis, and stellar mass, and so directly test models of planet formation and evolution.


2010 ◽  
Vol 6 (S276) ◽  
pp. 221-224
Author(s):  
Eric B. Ford

AbstractRadial velocity surveys have discovered over 400 exoplanets. While measuring eccentricities of low-mass planets remains a challenge, giant exoplanets display a broad range of orbital eccentricities. Recently, spectroscopic measurements during transit have demonstrated that the short-period giant planets (“hot-Jupiters”) also display a broad range of orbital inclinations (relative to the rotation axis of the host star). Both properties pose a challenge for simple disk migration models and suggest that late-stage orbital evolution can play an important role in determining the final architecture of planetary systems. One possible formation mechanism for the inclined hot-Jupiters is some form of eccentricity excitation (e.g., planet scattering, secular perturbations due to a distant planet or wide binary) followed tidal circularization. The planet scattering hypothesis also makes predictions for the population of planets at large separations. Recent discoveries of planets on wide orbits via direct imaging and highly anticipated results from upcoming direct imaging campaigns are poised to provide a new type of constraint on planet formation. This proceedings describes recent progress in understanding the formation of giant exoplanets.


Author(s):  
Luis Acedo

In this paper, we revisit a modified version of the classical Whitehead's theory of gravity in which all possible bilinear forms are considered to define the corresponding metric. Although, this is a linear theory that fails to give accurate results for the most sophisticated predictions of general relativity, such as gravity waves, it can still provide a convenient framework to analyze some new phenomena in the Solar System. In particular, recent development in the accurate tracking of spacecraft and the ephemerides of planetary positions have revealed certain anomalies in relation with our standard paradigm for celestial mechanics. Among them the so-called flyby anomaly and the anomalous increase of the astronomical unit play a prominent role. In the first case the total energy of the spacecraft changes during the flyby and a secular variation of the semi-major axis of the planetary orbits is found in the second anomaly. For this to happen it seems that a net energy and angular momentum transfer is taken place among the orbiting and the central body. We evaluate the total transfer per revolution for a planet orbiting the Sun in order to predict the astronomical unit anomaly in the context of Whitehead's theory. This could lead to a more deeply founded hypothesis for an extended gravity model.


2014 ◽  
Vol 785 (2) ◽  
pp. 126 ◽  
Author(s):  
Heather A. Knutson ◽  
Benjamin J. Fulton ◽  
Benjamin T. Montet ◽  
Melodie Kao ◽  
Henry Ngo ◽  
...  

2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Tanmay Kumar Poddar ◽  
Subhendra Mohanty ◽  
Soumya Jana

AbstractThe standard model leptons can be gauged in an anomaly free way by three possible gauge symmetries namely $${L_e-L_\mu }$$ L e - L μ , $${L_e-L_\tau }$$ L e - L τ , and $${L_\mu -L_\tau }$$ L μ - L τ . Of these, $${L_e-L_\mu }$$ L e - L μ and $${L_e-L_\tau }$$ L e - L τ forces can mediate between the Sun and the planets and change the perihelion precession of planetary orbits. It is well known that a deviation from the $$1/r^2$$ 1 / r 2 Newtonian force can give rise to a perihelion advancement in the planetary orbit, for instance, as in the well known case of Einstein’s gravity (GR) which was tested from the observation of the perihelion advancement of the Mercury. We consider the long range Yukawa potential which arises between the Sun and the planets if the mass of the gauge boson is $$M_{Z^{\prime }}\le \mathcal {O}(10^{-19})\mathrm {eV}$$ M Z ′ ≤ O ( 10 - 19 ) eV . We derive the formula of perihelion advancement for Yukawa type fifth force due to the mediation of such $$U(1)_{L_e-L_{\mu ,\tau }}$$ U ( 1 ) L e - L μ , τ gauge bosons. The perihelion advancement for Yukawa potential is proportional to the square of the semi major axis of the orbit for small $$M_{Z^{\prime }}$$ M Z ′ , unlike GR where it is largest for the nearest planet. For higher values of $$M_{Z^{\prime }}$$ M Z ′ , an exponential suppression of the perihelion advancement occurs. We take the observational limits for all planets for which the perihelion advancement is measured and we obtain the upper bound on the gauge boson coupling g for all the planets. The Mars gives the stronger bound on g for the mass range $$\le 10^{-19}\mathrm {eV}$$ ≤ 10 - 19 eV and we obtain the exclusion plot. This mass range of gauge boson can be a possible candidate of fuzzy dark matter whose effect can therefore be observed in the precession measurement of the planetary orbits.


2021 ◽  
Vol 366 (6) ◽  
Author(s):  
G. De Cesare ◽  
R. Capuzzo-Dolcetta

AbstractMany exoplanets are discovered in binary star systems in internal or in circumbinary orbits. Whether the planet can be habitable or not depends on the possibility to maintain liquid water on its surface, and therefore on the luminosity of its host stars and on the dynamical properties of the planetary orbit. The trajectory of a planet in a double star system can be determined, approximating stars and planet with point masses, by solving numerically the equations of motion of the classical three-body system. In this study, we analyze a large data set of planetary orbits, made up with high precision long integration at varying: the mass of the planet, its distance from the primary star, the mass ratio for the two stars in the binary system, and the eccentricity of the star motion. To simulate the gravitational dynamics, we use a 15th order integration scheme (IAS15, available within the REBOUND framework), that provides an optimal solution for long-term integration. In our data analysis, we evaluate if an orbit is stable or not and also provide the statistics of different types of instability: collisions with the primary or secondary star and planets ejected away from the binary star system. Concerning the stability, we find a significant number of orbits that are only marginally stable, according to the classification introduced by Musielak et al. (Astron. Astrophys. 434:355, 2005). For planets of negligible mass, we estimate the critical semi-major axis $a_{c}$ a c as a function of the mass ratio and the eccentricity of the binary, in agreement with the results of Holman and Wiegert (Astron. J. 117:621, 1999). However we find that for very massive planets (Super-Jupiters) the critical semi-major axis decrease in some cases by a few percent, compared to cases in which the mass of the planet is negligible.


2003 ◽  
Vol 12 (08) ◽  
pp. 1399-1414 ◽  
Author(s):  
İ. SAFFET YEŞİLYURT ◽  
E. NİHAL ERCAN ◽  
A. DEL POPOLO

In the current paper, we further improved the model for the migration of planets introduced and extended to time-dependent planetesimal accretion disks by Del Popolo. In the current study, the assumption of Del Popolo, that the surface density in planetesimals is proportional to that of gas, is relaxed. In order to obtain the evolution of planetesimal density, we use a method developed by Stepinski and Valageas which is able to simultaneously follow the evolution of gas and solid particles for up to 107 years. Then, the disk model is coupled to migration model introduced by Del Popolo in order to obtain the migration rate of the planet in the planetesimal. We find that the properties of solids known to exist in protoplanetary systems, together with reasonable density profiles for the disk, lead to a characteristic radius in the range 0.03–0.2 AU for the final semi-major axis of the giant planet.Hence our model can explain the properties of discovered extrasolar giant planets.


2007 ◽  
Vol 3 (S249) ◽  
pp. 331-346
Author(s):  
Frédéric S. Masset

AbstractTides come from the fact that different parts of a system do not fall in exactly the same way in a non-uniform gravity field. In the case of a protoplanetary disk perturbed by an orbiting, prograde protoplanet, the protoplanet tides raise a wake in the disk which causes the orbital elements of the planet to change over time. The most spectacular result of this process is a change in the protoplanet's semi-major axis, which can decrease by orders of magnitude on timescales shorter than the disk lifetime. This drift in the semi-major axis is called planetary migration. In a first part, we describe how the planet and disk exchange angular momentum and energy at the Lindblad and corotation resonances. Next we review the various types of planetary migration that have so far been contemplated: type I migration, which corresponds to low-mass planets (less than a few Earth masses) triggering a linear disk response; type II migration, which corresponds to massive planets (typically at least one Jupiter mass) that open up a gap in the disk; “runaway” or type III migration, which corresponds to sub-giant planets that orbit in massive disks; and stochastic or diffusive migration, which is the migration mode of low- or intermediate-mass planets embedded in turbulent disks. Lastly, we present some recent results in the field of planetary migration.


2008 ◽  
Vol 4 (S253) ◽  
pp. 556-559
Author(s):  
Joseph C. Carson

AbstractWithin the next five years, a number of direct-imaging planet search instruments, like the VLT SPHERE instrument, will be coming online. To successfully carry out their programs, these instruments will rely heavily on a-priori information on planet composition, atmosphere, and evolution. Transiting planet surveys, while covering a different semi-major axis regime, have the potential to provide critical foundations for these next-generation surveys. For example, improved information on planetary evolutionary tracks may significantly impact the insights that can be drawn from direct-imaging statistical data. Other high-impact results from transiting planet science include information on mass-to-radius relationships as well as atmospheric absorption bands. The marriage of transiting planet and direct-imaging results may eventually give us the first complete picture of planet migration, multiplicity, and general evolution.


Sign in / Sign up

Export Citation Format

Share Document