scholarly journals A systematic metallicity study of DustPedia galaxies reveals evolution in the dust-to-metal ratios

2019 ◽  
Vol 623 ◽  
pp. A5 ◽  
Author(s):  
P. De Vis ◽  
A. Jones ◽  
S. Viaene ◽  
V. Casasola ◽  
C. J. R. Clark ◽  
...  

Observations of evolution in the dust-to-metal ratio allow us to constrain the dominant dust processing mechanisms. In this work, we present a study of the dust-to-metal and dust-to-gas ratios in a sub-sample of ~500 DustPedia galaxies. Using literature and MUSE emission line fluxes, we derived gas-phase metallicities (oxygen abundances) for over 10 000 individual regions and determine characteristic metallicities for each galaxy. We study how the relative dust, gas, and metal contents of galaxies evolve by using metallicity and gas fraction as proxies for evolutionary state. The global oxygen abundance and nitrogen-to-oxygen ratio are found to increase monotonically as galaxies evolve. Additionally, unevolved galaxies (gas fraction >60%, metallicity 12 + log(O∕H) < 8.2) have dust-to-metal ratios that are about a factor of 2.1 lower (a factor of six lower for galaxies with gas fraction >80%) than the typical dust-to-metal ratio (Md∕MZ ~ 0.214) for more evolved sources. However, for high gas fractions, the scatter is larger due to larger observational uncertainties as well as a potential dependence of the dust grain growth timescale and supernova dust yield on local conditions and star formation histories. We find chemical evolution models with a strong contribution from dust grain growth describe these observations reasonably well. The dust-to-metal ratio is also found to be lower for low stellar masses and high specific star formation rates (with the exception of some sources undergoing a starburst). Finally, the metallicity gradient correlates weakly with the HI-to-stellar mass ratio, the effective radius and the dust-to-stellar mass ratio, but not with stellar mass.

2019 ◽  
Vol 15 (S341) ◽  
pp. 312-313
Author(s):  
Tsutomu T. Takeuchi ◽  
Ryosuke S. Asano ◽  
Sayaka Nagasaki ◽  
Takaya Nozawa ◽  
Yoichi Tamura ◽  
...  

AbstractRecently huge amount of dust Mdust ≃ 106−7M⊙ in galaxies at z = 7–8 has been discovered by ALMA observations. The suggested timescale of the dust production was a few–several×108 yr, while the stellar mass was several × 109M⊙. This amount of dust cannot be easily explained only by a supply from supernovae if we consider the dust destruction by reverse shocks. We propose that these values can be consistently explained if we take into account the grain growth in the interstellar medium (ISM). This scenario successfully reproduces the evolution of the dust mass, as well as the SFR, and stellar mass simultaneously. We conclude that even at such an early epoch of the Universe, the dust grain growth in the ISM plays a significant role in galaxies.


2020 ◽  
Vol 501 (2) ◽  
pp. 1568-1590
Author(s):  
Lukas J Furtak ◽  
Hakim Atek ◽  
Matthew D Lehnert ◽  
Jacopo Chevallard ◽  
Stéphane Charlot

ABSTRACT We present new measurements of the very low mass end of the galaxy stellar mass function (GSMF) at z ∼ 6−7 computed from a rest-frame ultraviolet selected sample of dropout galaxies. These galaxies lie behind the six Hubble Frontier Field clusters and are all gravitationally magnified. Using deep Spitzer/IRAC and Hubble Space Telescope imaging, we derive stellar masses by fitting galaxy spectral energy distributions and explore the impact of different model assumptions and parameter degeneracies on the resulting GSMF. Our sample probes stellar masses down to $M_{\star }\gt 10^{6}\, \text{M}_{\odot}$ and we find the z ∼ 6−7 GSMF to be best parametrized by a modified Schechter function that allows for a turnover at very low masses. Using a Monte Carlo Markov chain analysis of the GSMF, including accurate treatment of lensing uncertainties, we obtain a relatively steep low-mass end slope $\alpha \simeq -1.96_{-0.08}^{+0.09}$ and a turnover at $\log (M_T/\text{M}_{\odot})\simeq 7.10_{-0.56}^{+0.17}$ with a curvature of $\beta \simeq 1.00_{-0.73}^{+0.87}$ for our minimum assumption model with constant star formation history (SFH) and low dust attenuation, AV ≤ 0.2. We find that the z ∼ 6−7 GSMF, in particular its very low mass end, is significantly affected by the assumed functional form of the star formation history and the degeneracy between stellar mass and dust attenuation. For example, the low-mass end slope ranges from $\alpha \simeq -1.82_{-0.07}^{+0.08}$ for an exponentially rising SFH to $\alpha \simeq -2.34_{-0.10}^{+0.11}$ when allowing AV of up to 3.25. Future observations at longer wavelengths and higher angular resolution with the James Webb Space Telescope are required to break these degeneracies and to robustly constrain the stellar mass of galaxies on the extreme low-mass end of the GSMF.


2021 ◽  
Vol 503 (4) ◽  
pp. 5115-5133
Author(s):  
A A Khostovan ◽  
S Malhotra ◽  
J E Rhoads ◽  
S Harish ◽  
C Jiang ◽  
...  

ABSTRACT The H α equivalent width (EW) is an observational proxy for specific star formation rate (sSFR) and a tracer of episodic, bursty star-formation activity. Previous assessments show that the H α EW strongly anticorrelates with stellar mass as M−0.25 similar to the sSFR – stellar mass relation. However, such a correlation could be driven or even formed by selection effects. In this study, we investigate how H α EW distributions correlate with physical properties of galaxies and how selection biases could alter such correlations using a z = 0.47 narrow-band-selected sample of 1572 H α emitters from the Ly α Galaxies in the Epoch of Reionization (LAGER) survey as our observational case study. The sample covers a 3 deg2 area of COSMOS with a survey comoving volume of 1.1 × 105 Mpc3. We assume an intrinsic EW distribution to form mock samples of H α emitters and propagate the selection criteria to match observations, giving us control on how selection biases can affect the underlying results. We find that H α EW intrinsically correlates with stellar mass as W0∝M−0.16 ± 0.03 and decreases by a factor of ∼3 from 107 M⊙ to 1010 M⊙, while not correcting for selection effects steepens the correlation as M−0.25 ± 0.04. We find low-mass H α emitters to be ∼320 times more likely to have rest-frame EW&gt;200 Å compared to high-mass H α emitters. Combining the intrinsic W0–stellar mass correlation with an observed stellar mass function correctly reproduces the observed H α luminosity function, while not correcting for selection effects underestimates the number of bright emitters. This suggests that the W0–stellar mass correlation when corrected for selection effects is physically significant and reproduces three statistical distributions of galaxy populations (line luminosity function, stellar mass function, EW distribution). At lower stellar masses, we find there are more high-EW outliers compared to high stellar masses, even after we take into account selection effects. Our results suggest that high sSFR outliers indicative of bursty star formation activity are intrinsically more prevalent in low-mass H α emitters and not a byproduct of selection effects.


2020 ◽  
Vol 497 (4) ◽  
pp. 4773-4794 ◽  
Author(s):  
Sebastian Schulz ◽  
Gergö Popping ◽  
Annalisa Pillepich ◽  
Dylan Nelson ◽  
Mark Vogelsberger ◽  
...  

ABSTRACT We study the relation between the UV slope, β, and the ratio between the infrared- and UV luminosities (IRX) of galaxies from TNG50, the latest installment of the IllustrisTNG galaxy formation simulations. We select 7280 star-forming main-sequence (SFMS) galaxies with stellar mass ≥109 M⊙ at redshifts 0 ≤ z ≤ 4 and perform radiative transfer with skirt to model effects of interstellar medium dust on the emitted stellar light. Assuming a Milky Way dust type and a dust-to-metal ratio of 0.3, we find that TNG50 SFMS galaxies generally agree with observationally derived IRX–β relations at z ≲ 1. However, we find a redshift-dependent systematic offset with respect to empirically derived local relations, with the TNG50 IRX–β relation shifting towards lower β and steepening at higher redshifts. This is partially driven by variations in the dust-uncorrected UV slope of galaxies, due to different star formation histories of galaxies selected at different cosmic epochs; we suggest the remainder of the effect is caused by differences in the effective dust attenuation curves of galaxies as a function of redshift. We find a typical galaxy-to-galaxy variation of 0.3 dex in infrared excess (IRX) at fixed β, correlated with intrinsic galaxy properties: galaxies with higher star formation rates, star formation efficiencies, gas metallicities and stellar masses exhibit larger IRX values. We demonstrate a degeneracy between stellar age, dust geometry, and dust composition: z = 4 galaxies with a Small Magellanic Cloud dust type follow the same IRX–β relation as low-redshift galaxies with MW dust. We provide a redshift-dependent fitting function for the IRX–β relation for MW dust based on our models.


2019 ◽  
Vol 632 ◽  
pp. A5 ◽  
Author(s):  
M. Galametz ◽  
A. J. Maury ◽  
V. Valdivia ◽  
L. Testi ◽  
A. Belloche ◽  
...  

Context. Analyzing the properties of dust and its evolution in the early phases of star formation is crucial to put constraints on the collapse and accretion processes as well as on the pristine properties of planet-forming seeds. Aims. In this paper, we aim to investigate the variations of the dust grain size in the envelopes of the youngest protostars. Methods. We analyzed Plateau de Bure interferometric observations at 1.3 and 3.2 mm for 12 Class 0 protostars obtained as part of the CALYPSO survey. We performed our analysis in the visibility domain and derived dust emissivity index (β1−3mm) profiles as a function of the envelope radius at 200–2000 au scales. Results. Most of the protostellar envelopes show low dust emissivity indices decreasing toward the central regions. The decreasing trend remains after correction of the (potentially optically thick) central region emission, with surprisingly low β1−3mm < 1 values across most of the envelope radii of NGC 1333-IRAS 4A, NGC 1333-IRAS 4B, SVS13B, and Serpens-SMM4. Conclusions. We discuss the various processes that could explain such low and varying dust emissivity indices at envelope radii 200–2000 au. Our observations of extremely low dust emissivity indices could trace the presence of large (millimeter-size) grains in Class 0 envelopes, in which case our results would point to a radial increase of the dust grain size toward the inner envelope regions. While it is expected that large grains in young protostellar envelopes could be built via grain growth and coagulation, we stress that the typical timescales required to build millimeter grains in current coagulation models are at odds with the youth of our Class 0 protostars. Additional variations in the dust composition could also partly contribute to the low β1−3mm we observe. We find that the steepness of the β1−3mm radial gradient depends strongly on the envelope mass, which might favor a scenario in which large grains are built in high-density protostellar disks and transported to the intermediate envelope radii, for example with the help of outflows and winds.


2020 ◽  
Vol 499 (1) ◽  
pp. 948-956
Author(s):  
S M Randriamampandry ◽  
M Vaccari ◽  
K M Hess

ABSTRACT We investigate the relationship between the environment and the galaxy main sequence (the relationship between stellar mass and star formation rate), as well as the relationship between the environment and radio luminosity ($P_{\rm 1.4\, GHz}$), to shed new light on the effects of the environment on galaxies. We use the VLA-COSMOS 3-GHz catalogue, which consists of star-forming galaxies and quiescent galaxies (active galactic nuclei) in three different environments (field, filament, cluster) and for three different galaxy types (satellite, central, isolated). We perform for the first time a comparative analysis of the distribution of star-forming galaxies with respect to the main-sequence consensus region from the literature, taking into account galaxy environment and using radio observations at 0.1 ≤ z ≤ 1.2. Our results corroborate that the star formation rate is declining with cosmic time, which is consistent with the literature. We find that the slope of the main sequence for different z and M* bins is shallower than the main-sequence consensus, with a gradual evolution towards higher redshift bins, irrespective of environment. We see no trends for star formation rate in either environment or galaxy type, given the large errors. In addition, we note that the environment does not seem to be the cause of the flattening of the main sequence at high stellar masses for our sample.


2020 ◽  
Vol 498 (2) ◽  
pp. 2114-2137 ◽  
Author(s):  
Nicholas A Henden ◽  
Ewald Puchwein ◽  
Debora Sijacki

ABSTRACT We study the gas and stellar mass content of galaxy groups and clusters in the fable suite of cosmological hydrodynamical simulations, including the evolution of their central brightest cluster galaxies (BCGs), satellite galaxies, and intracluster light (ICL). The total gas and stellar mass of fable clusters are in good agreement with observations and show negligible redshift evolution at fixed halo mass for $M_{500} \gtrsim 3 \times 10^{14} \, \mathrm{M}_{\odot }$ at z ≲ 1, in line with recent findings from Sunyaev–Zel’dovich (SZ)-selected cluster samples. Importantly, the simulations predict significant redshift evolution in these quantities in the low-mass ($M_{500} \sim 10^{14} \, \mathrm{M}_{\odot }$) regime, which will be testable with upcoming SZ surveys such as SPT-3G. Whilst the stellar masses of fable BCGs are in reasonable agreement with observations, the total stellar mass in satellite galaxies is lower than observed and the total mass in ICL is somewhat higher. This may be caused by enhanced tidal stripping of satellite galaxies due to their large sizes. BCGs are characterized by moderate stellar mass growth at z &lt; 1 coincident with a late-time development of the ICL. The level of BCG mass growth is in good agreement with recent observations; however, we caution that the inferred growth depends sensitively on the mass definition. We further show that in situ star formation contributes more than half the mass of a BCG over its lifetime, the bulk of which is gained at z &gt; 1 where star formation rates are highest. The stellar mass profiles of the BCG+ICL component are similar to observed profiles out to ∼100 kpc at z ≈ 0 and follow a close to power law shape out to several hundred kpc. We further demonstrate that the inferred size growth of BCGs can be severely biased by the choice of parametric model and the outer radius of the fit.


2020 ◽  
Vol 493 (4) ◽  
pp. 5596-5605 ◽  
Author(s):  
Robin H W Cook ◽  
Luca Cortese ◽  
Barbara Catinella ◽  
Aaron Robotham

ABSTRACT We use our catalogue of structural decomposition measurements for the extended GALEX Arecibo SDSS Survey (xGASS) to study the role of bulges both along and across the galaxy star-forming main sequence (SFMS). We show that the slope in the sSFR–M⋆ relation flattens by ∼0.1 dex per decade in M⋆ when re-normalizing specifice star formation rate (sSFR) by disc stellar mass instead of total stellar mass. However, recasting the sSFR–M⋆ relation into the framework of only disc-specific quantities shows that a residual trend remains against disc stellar mass with equivalent slope and comparable scatter to that of the total galaxy relation. This suggests that the residual declining slope of the SFMS is intrinsic to the disc components of galaxies. We further investigate the distribution of bulge-to-total ratios (B/T) as a function of distance from the SFMS (ΔSFRMS). At all stellar masses, the average B/T of local galaxies decreases monotonically with increasing ΔSFRMS. Contrary to previous works, we find that the upper envelope of the SFMS is not dominated by objects with a significant bulge component. This rules out a scenario in which, in the local Universe, objects with increased star formation activity are simultaneously experiencing a significant bulge growth. We suggest that much of the discrepancies between different works studying the role of bulges originate from differences in the methodology of structurally decomposing galaxies.


Author(s):  
J K Barrera-Ballesteros ◽  
S F Sánchez ◽  
T Heckman ◽  
T Wong ◽  
A Bolatto ◽  
...  

Abstract The processes that regulate star formation are essential to understand how galaxies evolve. We present the relation between star formation rate density, ΣSFR , and hydrostatic midplane pressure, Ph , for 4260 star-forming regions of kpc size located in 96 galaxies included in the EDGE-CALIFA survey covering a wide range of stellar masses and morphologies. We find that these two parameters are tightly correlated, showing a smaller scatter in comparison to other star-forming relations. A power-law, with a slightly sub-linear index, is a good representation of this relation. Its residuals show a significant anti-correlation with both stellar age and metallicity whereas the total stellar mass may also play a secondary role in shaping the ΣSFR - Ph relation. For actively star-forming regions we find that the effective feedback momentum per unit stellar mass (p*/m*), measured from the Ph/ΣSFR ratio increases with Ph. The median value of this ratio for all the sampled regions is larger than the expected momentum just from supernovae explosions. Morphology of the galaxies, including bars, does not seem to have a significant impact in the ΣSFR - Ph relation. Our analysis indicates that local ΣSFR self-regulation comes mainly from momentum injection to the interstellar medium from supernovae explosions. However, other mechanisms in disk galaxies may also play a significant role in shaping the ΣSFR at kpc scales. Our results also suggest that Ph is the main parameter that modulates star formation at kpc scales, rather than individual components of the baryonic mass.


2020 ◽  
Vol 496 (4) ◽  
pp. 5072-5088 ◽  
Author(s):  
Dávid Guszejnov ◽  
Michael Y Grudić ◽  
Philip F Hopkins ◽  
Stella S R Offner ◽  
Claude-André Faucher-Giguère

ABSTRACT Understanding the evolution of self-gravitating, isothermal, magnetized gas is crucial for star formation, as these physical processes have been postulated to set the initial mass function (IMF). We present a suite of isothermal magnetohydrodynamic (MHD) simulations using the gizmo code that follow the formation of individual stars in giant molecular clouds (GMCs), spanning a range of Mach numbers found in observed GMCs ($\mathcal {M} \sim 10\!-\!50$). As in past works, the mean and median stellar masses are sensitive to numerical resolution, because they are sensitive to low-mass stars that contribute a vanishing fraction of the overall stellar mass. The mass-weighted median stellar mass M50 becomes insensitive to resolution once turbulent fragmentation is well resolved. Without imposing Larson-like scaling laws, our simulations find $M_\mathrm{50} \,\, \buildrel\propto \over \sim \,\,M_\mathrm{0} \mathcal {M}^{-3} \alpha _\mathrm{turb}\, \mathrm{SFE}^{1/3}$ for GMC mass M0, sonic Mach number $\mathcal {M}$, virial parameter αturb, and star formation efficiency SFE = M⋆/M0. This fit agrees well with previous IMF results from the ramses, orion2, and sphng codes. Although M50 has no significant dependence on the magnetic field strength at the cloud scale, MHD is necessary to prevent a fragmentation cascade that results in non-convergent stellar masses. For initial conditions and SFE similar to star-forming GMCs in our Galaxy, we predict M50 to be $\gt 20 \, \mathrm{M}_{\odot }$, an order of magnitude larger than observed ($\sim 2 \, \mathrm{M}_\odot$), together with an excess of brown dwarfs. Moreover, M50 is sensitive to initial cloud properties and evolves strongly in time within a given cloud, predicting much larger IMF variations than are observationally allowed. We conclude that physics beyond MHD turbulence and gravity are necessary ingredients for the IMF.


Sign in / Sign up

Export Citation Format

Share Document