scholarly journals Spatio-kinematical model of the collimated molecular outflow in the water-fountain nebula IRAS 16342–3814

2019 ◽  
Vol 629 ◽  
pp. A8 ◽  
Author(s):  
D. Tafoya ◽  
G. Orosz ◽  
W. H. T. Vlemmings ◽  
R. Sahai ◽  
A. F. Pérez-Sánchez

Context. Water-fountain nebulae are asymptotic giant branch (AGB) and post-AGB objects that exhibit high-velocity outflows traced by water-maser emission. Their study is important for understanding the interaction between collimated jets and the circumstellar material that leads to the formation of bipolar and/or multi-polar morphologies in evolved stars. Aims. The aim of this paper is to describe the three-dimensional morphology and kinematics of the molecular gas of the water-fountain nebula IRAS 16342−3814. Methods. Data was retrieved from the ALMA archive for analysis using a simple spatio-kinematical model. The software SHAPE was employed to construct a three-dimensional, spatio-kinematical model of the molecular gas in IRAS 16342−3814, and to then reproduce the intensity distribution and position-velocity diagram of the CO emission from the ALMA observations to derive the morphology and velocity field of the gas. Data from CO(J = 1 → 0) supported the physical interpretation of the model. Results. A spatio-kinematical model that includes a high-velocity collimated outflow embedded within material expanding at relatively lower velocity reproduces the images and position-velocity diagrams from the observations. The derived morphology is in good agreement with previous results from IR and water-maser emission observations. The high-velocity collimated outflow exhibits deceleration across its length, while the velocity of the surrounding component increases with distance. The morphology of the emitting region, the velocity field, and the mass of the gas as function of velocity are in excellent agreement with the properties predicted for a molecular outflow driven by a jet. The timescale of the molecular outflow is estimated to be ~70–100 yr. The scalar momentum carried by the outflow is much larger than it can be provided by the radiation of the central star. An oscillating pattern was found associated with the high-velocity collimated outflow. The oscillation period of the pattern is T ≈ 60–90 yr and its opening angle is θop ≈ 2°. Conclusions. The CO (J = 3 → 2) emission in IRAS 16342−3814 is interpreted in terms of a jet-driven molecular outflow expanding along an elongated region. The position-velocity diagram and the mass spectrum reveal a feature due to entrained material that is associated with the driving jet. This feature is not seen in other more evolved objects that exhibit more developed bipolar morphologies. It is likely that the jet in those objects has already disappeared since it is expected to last only for a couple hundred years. This strengthens the idea that water fountain nebulae are undergoing a very short transition during which they develop the collimated outflows that shape the circumstellar envelopes. The oscillating pattern seen in the CO high-velocity outflow is interpreted as due to precession with a relatively small opening angle. The precession period is compatible with the period of the corkscrew pattern seen at IR wavelengths. We propose that the high-velocity molecular outflow traces the underlying primary jet that produces such a pattern.

1997 ◽  
Vol 182 ◽  
pp. 141-152 ◽  
Author(s):  
J. Cernicharo ◽  
R. Neri ◽  
Bo Reipurth

We present high angular resolution observations of the molecular outflow associated with the optical jet and HH objects of the HH111 system. Interferometric observations in the CO J =2–1 and J =1–0 lines of the high velocity bullets associated with HH111 are presented for the first time. The molecular gas in these high velocity clumps has a moderate kinetic temperature and a mass of a few 10–4 M⊙ per bullet. We favor the view that HH jets and CO bullets, which represent different manifestations of the same physical phenomena, are driving the low-velocity molecular outflow.


1997 ◽  
Vol 163 ◽  
pp. 738-739 ◽  
Author(s):  
John F. Kartje ◽  
Arieh Königl ◽  
Moshe Elitzur

AbstractA natural site for water maser emission in AGNs is provided by dusty gas with properties characteristic of broad line region (BLR) clouds. Radiation shielding by dust in the clouds is critical for allowing molecular gas to exist ≤ 1 pc from the central engine. Thus, the innermost radius at which such masers appear should correspond to the grain sublimation radius rsub. We suggest a dynamical model in which the masing clouds are embedded within a magnetized accretion disk wind.


2017 ◽  
Vol 13 (S336) ◽  
pp. 369-372
Author(s):  
Daniel Tafoya ◽  
Wouter H. T. Vlemmings ◽  
Andres F. Pérez-Sánchez

AbstractWe present the results of the first detection of submillimeter water maser emission toward water-fountain nebulae. Using APEX we found emission at 321.226 GHz toward two sources: IRAS 18043−2116, and IRAS 18286−0959. The submillimeter H2O masers exhibit expansion velocities larger than those of the OH masers, suggesting that these masers, similarly to the 22 GHz masers, originate in fast bipolar outflows. The 321 GHz masers in IRAS 18043−2116 and IRAS 18286−0959, which figure among the sources with the fastest H2O masers, span a velocity range similar to that of the 22 GHz masers, indicating that they probably coexist. The intensity of the submillimeter masers is comparable to the 22 GHz masers, implying that the kinetic temperature of the region where the masers originate is Tk>1000 K. We propose a simple model invoking the passage of two shocks through the same gas that creates the conditions for explaining the strong high-velocity 321 GHz masers coexisting with the 22 GHz masers in the same region.


1991 ◽  
Vol 147 ◽  
pp. 456-457
Author(s):  
J. Martin-Pintado ◽  
A. Rodriguez-Franco ◽  
R. Bachiller

The IRAM 30-m radiotelescope have been used to obtain, with high angular resolution, the spatial distribution and the physical conditions of the quiescent gas in Orion A, and to search for high velocity molecular gas far away from the well known molecular outflow around IRc2. To study the quiescent gas we mapped a region of 200″×300″ around IRc2 in the J=12-11 and J=16-15 lines of HC3N with angular resolutions of 22″ and 17″ respectively. The left panel of Fig. 1 shows the spatial distribution of the high density quiescent gas around IRc2 for different radial velocities. Beside the already known molecular ridge north of IRc2 (see e. g. Bartla et al. 1983), we find four very thin (nearly unresolved) and long filaments, like “fingers”, stretching from IRc2 to the north and west. The deconvolved size of the longest fingers is ≈180″×15″. From a multi-transition analysis of the HC3N emission we derive H2 densities of 1−8 105 cm−3, kinetic temperatures larger than 40 K and masses of ≈10 Mo. Our high sensitivity observations of the J=2-1 line of CO at selected positions (see right panel ib Fig. 1) show widespread molecular gas with high velocities wings over the region where the molecular fingers and the HH objects are observed (see Fig.1). The high velocity emission occurs over a range of ±40 kms−1. This high velocity gas is more extended (up to 150″ from IRc2) than the very compact (40″) and well studied molecular outflow around IRc2 (see e.g. Wilson et al. 1986). The terminal velocities of the CO wings decrease from 100 km s−1 (corresponding to the very fast molecular flow) to the typical terminal velocities of the extended high velocity gas when the distance to IRc2 changes from 40″ to 60″. The origin of the large scale high velocity gas is unknown, but it is very likely the link between the very compact (40″) and fast (±100 km s−1) molecular outflow around IRc2 and the ionized high velocity gas and the HH objects (Martín-Pintado et al. 1990). The mass, momentum and energy of the extended high velocity gas are crudely estimated to be ≈1 Mo, ≈20 Mo km s−1 and ≈2 1045 erg respectively (i.e. a factor of ≈10 smaller than those of the fast molecular outflow). The location, at the edges of the molecular fingers, and the proper motions of the HH objects (see Fig. 1) suggest the stellar wind is interacting with the molecular fingers. If this interpretation is correct, the influence of the molecular outflow in Orion on the surrounding molecular clouds must be revised.


1999 ◽  
Vol 191 ◽  
pp. 315-320
Author(s):  
A. M. S. Richards ◽  
R. J. Cohen ◽  
I. Bains ◽  
J. A. Yates

We used MERLIN to observe RT Vir at 22 GHz at six epochs during 10 weeks. The water maser emission comes from a thick expanding shell with an elliptical velocity field. MERLIN has a velocity resolution of 0.1 km s−1 and milli-arcsecond angular resolution, revealing details within the individual maser clouds, typically 12 mas in diameter spanning 15 velocity channels. The brightest peak doubles in intensity to 800 Jy/beam. Features at velocities close to the stellar velocity show the largest proper motions of ∼ 3 mas away from the centre of emission. Some features are seen near the outer limits to the maser shell at early epochs only, but new masers appear close to the inner rim. The variability of individual maser features is not a simple function of the stellar luminosity.


2020 ◽  
Vol 494 (2) ◽  
pp. 2299-2311
Author(s):  
Chris J R Lynch ◽  
Michael D Smith

ABSTRACT Most stars form in binaries, and both stars may grow by accreting material from a circumbinary disc on to their own discs. We suspect that in many cases a wide molecular wind will envelope a collimated atomic jet emanating from close to an orbiting young star. This so-called circumbinary scenario is explored here in order to find common identifiable properties. The dynamical set-up is studied with three-dimensional simulations with chemistry and cooling included. We extract the properties on scales of order 100 au and compare to the co-orbital scenario in which the wind and jet sources are in orbit. We find that the rapid orbital motion generates a wide ionized sheath around the jet core with a large opening angle at the base. This is independent of the presence of the surrounding molecular outflow. However, the atomic jet is recollimated beyond ∼55 au when the molecular outflow restricts the motion of the ambient medium which, in turn, confines the jet. These physical properties are related to the optical H α imaging, providing a means of distinguishing between models. The high excitation sheath and recollimation region can be explored on these scales through the next generation of instruments. However, in general, the amount and location of the ionized material, whether in the knots or the sheath, will depend on several parameters including the orbital period, axis alignment, and pulse amplitude.


2004 ◽  
Vol 217 ◽  
pp. 314-315
Author(s):  
Fabian Walter ◽  
Axel Weiss ◽  
Nick Scoville

We present a high-resolution (3.6“, 70 pc) CO(1-0) mosaic of the molecular gas in M 82 covering an area of 2.5'x3.5’ (2.8 kpc x 3.9 kpc) obtained with the OVRO millimeter interferometer. The observations reveal the presence of huge amounts of molecular gas (> 70% of the total molecular mass, Mtot ≈ 1.3 × 109M⊙) outside the central 1 kpc disk. Molecular streamers are detected in and below M 82's disk out to distances from the center of ~1.7 kpc. Some of these streamers are well correlated with optical absorption features; they form the basis of some of the prominent tidal HI features around M 82. This provides evidence that the molecular gas within M 82's optical disk is disrupted by the interaction with M 81. Molecular gas is found in M 82's outflow/halo, reaching distances up to 1.2 kpc below the plane; CO line-splitting has been detected for the first time in the outflow. The maximum outflow velocity is ~ 230 km s−1; we derive an opening angle of ~ 55° for the molecular outflow cone. The total amount of gas in the outflow is > 3 × 108 M⊙ and its kinetic energy is of order 1055 erg, about one percent of the estimated total mechanical energy input of M 82's starburst. Our study implies that extreme starburst environments can move significant amounts of molecular gas in to a galaxy's halo (and even to the intergalactic medium).


2007 ◽  
Vol 3 (S242) ◽  
pp. 287-291
Author(s):  
J. M. Chapman ◽  
R. M. Deacon ◽  
A. J. Green ◽  
M. Cohen

AbstractWe have used the Tidbinbilla 70-m antenna to search for 22 GHz H2O maser emission from a sample of 85 evolved stars. 21 detections were made. Of these 15 were from massive AGB stars. High-velocity H2O maser emission was detected from five sources, of which four are post-AGB stars. Three of the high-velocity sources, b292 (IRAS 18043–2116), d46 (IRAS 15445–5449), and d62 (IRAS 15544–5332) were new discoveries. d46 is also a source of non-thermal radio continuum emission. The high-velocity H2O maser emission and the radio continuum from post-AGB stars are probably associated with shocks that form from wind-wind interactions.


1991 ◽  
Vol 147 ◽  
pp. 456-457
Author(s):  
J. Martin-Pintado ◽  
A. Rodriguez-Franco ◽  
R. Bachiller

The IRAM 30-m radiotelescope have been used to obtain, with high angular resolution, the spatial distribution and the physical conditions of the quiescent gas in Orion A, and to search for high velocity molecular gas far away from the well known molecular outflow around IRc2. To study the quiescent gas we mapped a region of 200″×300″ around IRc2 in the J=12-11 and J=16-15 lines of HC3N with angular resolutions of 22″ and 17″ respectively. The left panel of Fig. 1 shows the spatial distribution of the high density quiescent gas around IRc2 for different radial velocities. Beside the already known molecular ridge north of IRc2 (see e. g. Bartla et al. 1983), we find four very thin (nearly unresolved) and long filaments, like “fingers”, stretching from IRc2 to the north and west. The deconvolved size of the longest fingers is ≈180″×15″. From a multi-transition analysis of the HC3N emission we derive H2 densities of 1−8 105 cm−3, kinetic temperatures larger than 40 K and masses of ≈10 Mo. Our high sensitivity observations of the J=2-1 line of CO at selected positions (see right panel ib Fig. 1) show widespread molecular gas with high velocities wings over the region where the molecular fingers and the HH objects are observed (see Fig.1). The high velocity emission occurs over a range of ±40 kms−1. This high velocity gas is more extended (up to 150″ from IRc2) than the very compact (40″) and well studied molecular outflow around IRc2 (see e.g. Wilson et al. 1986). The terminal velocities of the CO wings decrease from 100 km s−1 (corresponding to the very fast molecular flow) to the typical terminal velocities of the extended high velocity gas when the distance to IRc2 changes from 40″ to 60″. The origin of the large scale high velocity gas is unknown, but it is very likely the link between the very compact (40″) and fast (±100 km s−1) molecular outflow around IRc2 and the ionized high velocity gas and the HH objects (Martín-Pintado et al. 1990). The mass, momentum and energy of the extended high velocity gas are crudely estimated to be ≈1 Mo, ≈20 Mo km s−1 and ≈2 1045 erg respectively (i.e. a factor of ≈10 smaller than those of the fast molecular outflow). The location, at the edges of the molecular fingers, and the proper motions of the HH objects (see Fig. 1) suggest the stellar wind is interacting with the molecular fingers. If this interpretation is correct, the influence of the molecular outflow in Orion on the surrounding molecular clouds must be revised.


2008 ◽  
Vol 4 (S251) ◽  
pp. 173-174 ◽  
Author(s):  
Y. Gómez ◽  
D. Tafoya ◽  
G. Anglada ◽  
L. Loinard ◽  
J. M. Torrelles ◽  
...  

AbstractWater maser emission has been detected only toward three planetary nebulae (PNe). In particular, in K3-35, the first PN where water vapor maser emission was detected, the components are located in a torus-like structure with a radius of 85 AU and also at the surprisingly large distance of 5000 AU from the star, in the tips of the bipolar lobes. The existence of these water molecules in PNe is puzzling, probably related to some unknown mechanism shielding them against the ionizing radiation. We report the detection of HCO+ (J = 1 − 0) emission toward K 3-35, that not only suggests that dense molecular gas (~105 cm−3) is present in this PN, but also that this kind of PN can enrich their surroundings with organic molecules.


Sign in / Sign up

Export Citation Format

Share Document