scholarly journals The cosmic-ray content of the Orion-Eridanus superbubble

2020 ◽  
Vol 635 ◽  
pp. A96 ◽  
Author(s):  
T. Joubaud ◽  
I. A. Grenier ◽  
J. M. Casandjian ◽  
T. Tolksdorf ◽  
R. Schlickeiser

Aims. The nearby Orion-Eridanus superbubble, which was blown by multiple supernovae several million years ago, has likely produced cosmic rays. Its turbulent medium is still energised by massive stellar winds and it can impact cosmic-ray transport locally. The γ radiation produced in interactions between cosmic rays and interstellar gas can be used to compare the cosmic-ray spectrum in the superbubble and in other regions near the Sun. It can reveal spectral changes induced in GeV to TeV cosmic rays by the past and present stellar activity in the superbubble. Methods. We used ten years of data from the Fermi Large Area Telescope (LAT) in the 0.25–63 GeV energy range to study the closer (Eridanus) end of the superbubble at low Galactic latitudes. We modelled the spatial and spectral distributions of the γ rays produced in the different gas phases (atomic, molecular, dark, and ionised) of the clouds found in this direction. The model included other non-gaseous components to match the data. Results. We found that the γ-ray emissivity spectrum of the gas along the outer rim and in a shell inside the superbubble is consistent with the average spectrum measured in the solar neighbourhood. It is also consistent with the cosmic-ray spectrum directly measured in the Solar System. This homogeneity calls for a detailed assessment of the recent supernova rate and current census of massive stellar winds in the superbubble in order to estimate the epoch and rate of cosmic-ray production and to constrain the transport conditions that can lead to such homogeneity and little re-acceleration. We also found significant evidence that a diffuse atomic cloud lying outside the superbubble, at a height of 200–250 pc below the Galactic plane, is pervaded by a 34% lower cosmic-ray flux, but with the same particle energy distribution as the local one. Super-GeV cosmic rays should freely cross such a light and diffuse cirrus cloud without significant loss or spectral distorsion. We tentatively propose that the cosmic-ray loss relates to the orientation of the magnetic field lines threading the cirrus, which point towards the halo according to the dust polarisation data from Planck. Finally, we gathered the present emissivity measurements with previous estimates obtained around the Sun to show how the local cosmic-ray flux decreases with Galactic height and to compare this trend with model predictions.

2005 ◽  
Vol 20 (29) ◽  
pp. 6621-6632 ◽  
Author(s):  
BERND HEBER

The heliosphere is the region around the Sun that is filled by the solar wind and its embedded magnetic field. The interaction of the supersonic solar wind with the local interstellar medium leads to a transition from supersonic to subsonic speeds at the heliospheric termination shock. The latter is regarded to be the source of the anomalous component of cosmic rays. Within the heliosphere "local" energetic particle sources, like the Sun and interplanetary shock waves contribute to the cosmic ray flux, too. At energies below a few GeV the observed galactic and anomalous cosmic ray intensities are modulated by the heliospheric magnetic field. In my contribution, both the current knowledge and hypotheses about modulation and the transport of cosmic rays in the heliosphere are reviewed.


2003 ◽  
Vol 21 (6) ◽  
pp. 1217-1228 ◽  
Author(s):  
R. B. McKibben ◽  
J. J. Connell ◽  
C. Lopate ◽  
M. Zhang ◽  
J. D. Anglin ◽  
...  

Abstract. In 2000–2001 Ulysses passed from the south to the north polar regions of the Sun in the inner heliosphere, providing a snapshot of the latitudinal structure of cosmic ray modulation and solar energetic particle populations during a period near solar maximum.  Observations from the COSPIN suite of energetic charged particle telescopes show that latitude variations in the cosmic ray intensity in the inner heliosphere are nearly non-existent near solar maximum, whereas small but clear latitude gradients were observed during the similar phase of Ulysses’ orbit near the 1994–95 solar minimum. At proton energies above ~10 MeV and extending up to >70 MeV, the intensities are often dominated by Solar Energetic Particles (SEPs) accelerated near the Sun in association with intense solar flares and large Coronal Mass Ejections (CMEs). At lower energies the particle intensities are almost constantly enhanced above background, most likely as a result of a mix of SEPs and particles accelerated by interplanetary shocks. Simultaneous high-latitude Ulysses and near-Earth observations show that most events that produce large flux increases near Earth also produce flux increases at Ulysses, even at the highest latitudes attained. Particle anisotropies during particle onsets at Ulysses are typically directed outwards from the Sun, suggesting either acceleration extending to high latitudes or efficient cross-field propagation somewhere inside the orbit of Ulysses. Both cosmic ray and SEP observations are consistent with highly efficient transport of energetic charged particles between the equatorial and polar regions and across the mean interplanetary magnetic fields in the inner heliosphere.Key words. Interplanetary physics (cosmic rays) – Solar physics, astrophysics and astronomy (energetic particles; flares and mass ejections)


Author(s):  
Arnon Dar

Changes in the solar neighbourhood due to the motion of the sun in the Galaxy, solar evolution, and Galactic stellar evolution influence the terrestrial environment and expose life on the Earth to cosmic hazards. Such cosmic hazards include impact of near-Earth objects (NEOs), global climatic changes due to variations in solar activity and exposure of the Earth to very large fluxes of radiations and cosmic rays from Galactic supernova (SN) explosions and gamma-ray bursts (GRBs). Such cosmic hazards are of low probability, but their influence on the terrestrial environment and their catastrophic consequences, as evident from geological records, justify their detailed study, and the development of rational strategies, which may minimize their threat to life and to the survival of the human race on this planet. In this chapter I shall concentrate on threats to life from increased levels of radiation and cosmic ray (CR) flux that reach the atmosphere as a result of (1) changes in solar luminosity, (2) changes in the solar environment owing to the motion of the sun around the Galactic centre and in particular, owing to its passage through the spiral arms of the Galaxy, (3) the oscillatory displacement of the solar system perpendicular to the Galactic plane, (4) solar activity, (5) Galactic SN explosions, (6) GRBs, and (7) cosmic ray bursts (CRBs). The credibility of various cosmic threats will be tested by examining whether such events could have caused some of the major mass extinctions that took place on planet Earth and were documented relatively well in the geological records of the past 500 million years (Myr). A credible claim of a global threat to life from a change in global irradiation must first demonstrate that the anticipated change is larger than the periodical changes in irradiation caused by the motions of the Earth, to which terrestrial life has adjusted itself. Most of the energy of the sun is radiated in the visible range. The atmosphere is highly transparent to this visible light but is very opaque to almost all other bands of the electromagnetic spectrum except radio waves, whose production by the sun is rather small.


1968 ◽  
Vol 1 (4) ◽  
pp. 154-157
Author(s):  
D. J. Cooke ◽  
A. G. Fenton

Primary cosmic rays passing through the solar system carry with them valuable information about solar and astrophysical phenomena in the form of intensity and spectral variations. In order that this information be efficiently extracted from observations of the directional cosmic-ray flux at the surface of the Earth, it is essential to have accurate information available to enable the relating of the observed secondary cosmic-ray directions of motion and intensity to those outside the range of the disturbing terrestrial influences.


1981 ◽  
Vol 94 ◽  
pp. 397-398
Author(s):  
H. S. Ahluwalia

Sekido and Murakami (1958) proposed the existence of the heliosphere to explain the scattered component of the solar cosmic rays. The heliosphere of their conception is a spherical shell around the sun. The shell contains a highly-irregular magnetic field and serves to scatter the cosmic rays emitted by the sun. It thereby gives rise to an isotropic component of solar cosmic rays, following the maximum in the ground level enhancement (GLE). Meyer et al. (1956) showed that a similar picture applies to the GLE of 23 February 1956. They conclude that the inner and outer radii of the shell should be 1.4 AU and 5 AU respectively. They suggest that a shell is formed by the “pile-up” of the solar wind under pressure exerted by the interstellar magnetic field, as suggested by Davis (1955).


2020 ◽  
Vol 633 ◽  
pp. A83
Author(s):  
J. Becker Tjus ◽  
P. Desiati ◽  
N. Döpper ◽  
H. Fichtner ◽  
J. Kleimann ◽  
...  

The cosmic-ray Sun shadow, which is caused by high-energy charged cosmic rays being blocked and deflected by the Sun and its magnetic field, has been observed by various experiments, such as Argo-YBJ, Tibet, HAWC, and IceCube. Most notably, the shadow’s size and depth was recently shown to correlate with the 11-year solar cycle. The interpretation of such measurements, which help to bridge the gap between solar physics and high-energy particle astrophysics, requires a solid theoretical understanding of cosmic-ray propagation in the coronal magnetic field. It is the aim of this paper to establish theoretical predictions for the cosmic-ray Sun shadow in order to identify observables that can be used to study this link in more detail. To determine the cosmic-ray Sun shadow, we numerically compute trajectories of charged cosmic rays in the energy range of 5−316 TeV for five different mass numbers. We present and analyze the resulting shadow images for protons and iron, as well as for typically measured cosmic-ray compositions. We confirm the observationally established correlation between the magnitude of the shadowing effect and both the mean sunspot number and the polarity of the magnetic field during the solar cycle. We also show that during low solar activity, the Sun’s shadow behaves similarly to that of a dipole, for which we find a non-monotonous dependence on energy. In particular, the shadow can become significantly more pronounced than the geometrical disk expected for a totally unmagnetized Sun. For times of high solar activity, we instead predict the shadow to depend monotonously on energy and to be generally weaker than the geometrical shadow for all tested energies. These effects should become visible in energy-resolved measurements of the Sun shadow, and may in the future become an independent measure for the level of disorder in the solar magnetic field.


2008 ◽  
Vol 175-176 ◽  
pp. 459-462 ◽  
Author(s):  
C. Noda ◽  
A. Iyono ◽  
H. Matsumoto ◽  
M. Masuda ◽  
M. Okita ◽  
...  

1959 ◽  
Vol 37 (11) ◽  
pp. 1207-1215
Author(s):  
J. Katzman

The cosmic ray intensity as measured with an extremely narrow-angle telescope, 1.2 × 10−3 steradians, and with 96 inches of lead as absorber for the period 1 January 1955 to 31 December 1958 shows an increase of 20%. This increase is attributed to particles coming from the sun. It is shown that the change in hour of maximum of the first and second harmonics can be explained by a change in the relative importance of the impact zones. This phenomenon is attributed to a change in the number and polarity of sunspots.


1996 ◽  
Vol 145 ◽  
pp. 333-340
Author(s):  
Richard G. Strom

Most of the supernova remnants known in the Galaxy have only been detected at radio frequencies. The reason for this is absorption in the Galactic plane at both optical and X-ray wavelengths. All available evidence suggests that the shock fronts which accompany supernova remnants accelerate enough cosmic rays to GeV energies to produce readily detectable radio emission. This is fortunate, for it enables us to study remnants throughout the Galactic disk, although existing catalogues may be anywhere from 50 to 90 % incomplete. Cosmic rays and the magnetic fields in which they gyrate are the essential ingredients for producing the synchrotron radiation which is observed at radio frequencies. Various methods for estimating magnetic field strengths can be applied to a small number of remnants, and produce values not far from those based upon equipartition between the energy contents of particles and fields. From this, the particle energy content is derived for a number of objects.


2014 ◽  
Vol 1 ◽  
pp. 65-71 ◽  
Author(s):  
P. Desiati ◽  
A. Lazarian

Abstract. Cosmic rays are observed to possess a small non uniform distribution in arrival direction. Such anisotropy appears to have a roughly consistent topology between tens of GeV and hundreds of TeV, with a smooth energy dependency on phase and amplitude. Above a few hundreds of TeV a sudden change in the topology of the anisotropy is observed. The distribution of cosmic ray sources in the Milky Way is expected to inject anisotropy on the cosmic ray flux. The nearest and most recent sources, in particular, are expected to contribute more significantly than others. Moreover the interstellar medium is expected to have different characteristics throughout the Galaxy, with different turbulent properties and injection scales. Propagation effects in the interstellar magnetic field can shape the cosmic ray particle distribution as well. In particular, in the 1–10 TeV energy range, they have a gyroradius comparable to the size of the Heliosphere, assuming a typical interstellar magnetic field strength of 3 μG. Therefore they are expected to be strongly affected by the Heliosphere in a manner ordered by the direction of the local interstellar magnetic field and of the heliotail. In this paper we discuss on the possibility that TeV cosmic rays arrival distribution might be significantly redistributed as they propagate through the Heliosphere.


Sign in / Sign up

Export Citation Format

Share Document