scholarly journals Stellar impact on disequilibrium chemistry and observed spectra of hot Jupiter atmospheres

2020 ◽  
Vol 639 ◽  
pp. A48 ◽  
Author(s):  
D. Shulyak ◽  
L. M. Lara ◽  
M. Rengel ◽  
N.-E. Nèmec

Aims. We study the effect of disequilibrium processes (photochemistry and vertical transport) on mixing ratio profiles of neutral species and on the simulated spectra of a hot Jupiter exoplanet that orbits stars of various spectral types. We additionally address the impact of stellar activity that should be present, to various degrees, in all stars with convective envelopes. Methods. We used the VULCAN chemical kinetic code to compute number densities of species in irradiated planetary atmospheres. The temperature-pressure profile of the atmosphere was computed with the HELIOS code. We also utilized the τ-REx forward model to predict the spectra of planets in primary and secondary eclipses. In order to account for the stellar activity, we made use of the observed solar extreme ultraviolet (XUV) spectrum taken from Virtual Planetary Laboratory as a proxy for an active sun-like star. Results. We find large changes in the mixing ratios of most chemical species in planets orbiting A-type stars, which radiate strong XUV flux thereby inducing a very effective photodissociation. For some species, these changes can propagate very deep into the planetary atmosphere to pressures of around 1 bar. To observe disequilibrium chemistry we favor hot Jupiters with temperatures Teq = 1000 K and ultra-hot Jupiters, with Teq ≈ 3000 K,which also have temperature inversion in their atmospheres. On the other hand, disequilibrium calculations predict no noticeable changes in spectra of planets with intermediate temperatures. We also show that stellar activity similar to that of the modern Sun drives important changes in mixing ratio profiles of atmospheric species. However, these changes take place at very high atmospheric altitudes and thus do not affect predicted spectra. Finally, we estimate that the effect of disequilibrium chemistry in planets orbiting nearby bright stars could be robustly detected and studied with future missions with spectroscopic capabilities in infrared such as James Webb Space Telescope and ARIEL.

2020 ◽  
Vol 638 ◽  
pp. A5 ◽  
Author(s):  
I. Carleo ◽  
L. Malavolta ◽  
A. F. Lanza ◽  
M. Damasso ◽  
S. Desidera ◽  
...  

Context. The existence of hot Jupiters is still not well understood. Two main channels are thought to be responsible for their current location: a smooth planet migration through the protoplanetary disk or the circularization of an initial highly eccentric orbit by tidal dissipation leading to a strong decrease in the semimajor axis. Different formation scenarios result in different observable effects, such as orbital parameters (obliquity and eccentricity) or frequency of planets at different stellar ages. Aims. In the context of the GAPS Young Objects project, we are carrying out a radial velocity survey with the aim of searching and characterizing young hot-Jupiter planets. Our purpose is to put constraints on evolutionary models and establish statistical properties, such as the frequency of these planets from a homogeneous sample. Methods. Since young stars are in general magnetically very active, we performed multi-band (visible and near-infrared) spectroscopy with simultaneous GIANO-B + HARPS-N (GIARPS) observing mode at TNG. This helps in dealing with stellar activity and distinguishing the nature of radial velocity variations: stellar activity will introduce a wavelength-dependent radial velocity amplitude, whereas a Keplerian signal is achromatic. As a pilot study, we present here the cases of two known hot Jupiters orbiting young stars: HD 285507 b and AD Leo b. Results. Our analysis of simultaneous high-precision GIARPS spectroscopic data confirms the Keplerian nature of the variation in the HD 285507 radial velocities and refines the orbital parameters of the hot Jupiter, obtaining an eccentricity consistent with a circular orbit. Instead, our analysis does not confirm the signal previously attributed to a planet orbiting AD Leo. This demonstrates the power of the multi-band spectroscopic technique when observing active stars.


2020 ◽  
Vol 499 (2) ◽  
pp. 2229-2244
Author(s):  
Shota Notsu ◽  
Christian Eistrup ◽  
Catherine Walsh ◽  
Hideko Nomura

ABSTRACT The radial-dependent positions of snowlines of abundant oxygen- and carbon-bearing molecules in protoplanetary discs will result in systematic radial variations in the carbon-to-oxygen (C/O) ratios in the gas and ice. This variation is proposed as a tracer of the formation location of gas-giant planets. However, disc chemistry can affect the C/O ratios in the gas and ice, thus potentially erasing the chemical fingerprint of snowlines in gas-giant atmospheres. We calculate the molecular composition of hot Jupiter atmospheres using elemental abundances extracted from a chemical kinetics model of a disc mid-plane, where we have varied the initial abundances and ionization rates. The models predict a wider diversity of possible atmospheres than those predicted using elemental ratios from snowlines only. As found in previous work, as the C/O ratio exceeds the solar value, the mixing ratio of CH4 increases in the lower atmosphere, and those of C2H2 and HCN increase mainly in the upper atmosphere. The mixing ratio of H2O correspondingly decreases. We find that hot Jupiters with C/O > 1 can only form between the CO2 and CH4 snowlines. Moreover, they can only form in a disc which has fully inherited interstellar abundances, and where negligible chemistry has occurred. Hence, carbon-rich planets are likely rare, unless efficient transport of hydrocarbon-rich ices via pebble drift to within the CH4 snowline is a common phenomenon. We predict combinations of C/O ratios and elemental abundances that can constrain gas-giant planet formation locations relative to snowline positions, and that can provide insight into the disc chemical history.


2020 ◽  
Vol 640 ◽  
pp. L5 ◽  
Author(s):  
F. Yan ◽  
E. Pallé ◽  
A. Reiners ◽  
K. Molaverdikhani ◽  
N. Casasayas-Barris ◽  
...  

Temperature inversion layers are predicted to be present in ultra-hot giant planet atmospheres. Although such inversion layers have recently been observed in several ultra-hot Jupiters, the chemical species responsible for creating the inversion remain unidentified. Here, we present observations of the thermal emission spectrum of an ultra-hot Jupiter, WASP-189b, at high spectral resolution using the HARPS-N spectrograph. Using the cross-correlation technique, we detect a strong Fe I signal. The detected Fe I spectral lines are found in emission, which is direct evidence of a temperature inversion in the planetary atmosphere. We further performed a retrieval on the observed spectrum using a forward model with an MCMC approach. When assuming a solar metallicity, the best-fit result returns a temperature of 4320−100+120 K at the top of the inversion, which is significantly hotter than the planetary equilibrium temperature (2641 K). The temperature at the bottom of the inversion is determined as 2200−800+1000 K. Such a strong temperature inversion is probably created by the absorption of atomic species like Fe I.


2020 ◽  
Vol 636 ◽  
pp. A68 ◽  
Author(s):  
Benjamin Drummond ◽  
Eric Hébrard ◽  
Nathan J. Mayne ◽  
Olivia Venot ◽  
Robert J. Ridgway ◽  
...  

We present results from a set of simulations using a fully coupled three-dimensional (3D) chemistry-radiation-hydrodynamics model and investigate the effect of transport of chemical species by the large-scale atmospheric flow in hot Jupiter atmospheres. We coupled a flexible chemical kinetics scheme to the Met Office Unified Model, which enables the study of the interaction of chemistry, radiative transfer, and fluid dynamics. We used a newly-released “reduced” chemical network, comprising 30 chemical species, that was specifically developed for its application in 3D atmosphere models. We simulated the atmospheres of the well-studied hot Jupiters HD 209458b and HD 189733b which both have dayside–nightside temperature contrasts of several hundred Kelvin and superrotating equatorial jets. We find qualitatively quite different chemical structures between the two planets, particularly for methane (CH4), when advection of chemical species is included. Our results show that consideration of 3D chemical transport is vital in understanding the chemical composition of hot Jupiter atmospheres. Three-dimensional mixing leads to significant changes in the abundances of absorbing gas-phase species compared with what would be expected by assuming local chemical equilibrium, or from models including 1D – and even 2D – chemical mixing. We find that CH4, carbon dioxide (CO2), and ammonia (NH3) are particularly interesting as 3D mixing of these species leads to prominent signatures of out-of-equilibrium chemistry in the transmission and emission spectra, which are detectable with near-future instruments.


2020 ◽  
Vol 17 ◽  
Author(s):  
Zhiping Jiang ◽  
Zhizhang Tian ◽  
Chuntao Zhang ◽  
Dengke Li ◽  
Ruoxin Wu ◽  
...  

Background: Speciation analysis is defined as the analytical activities of identifying and/or measuring the quantities of one or more individual chemical species in a sample. The knowledge of elemental species provides more complete information about mobility, bioavailability and the impact of elements on ecological systems or biological organisms. It is no longer sufficient to quantitate the total elemental content of samples to define toxicity or essentiality. Thus speciation analysis is of vital importance and generally offers a better understanding of a specific element. Discussion: Thorough speciation scheme consisting of sampling, sample preparation, species analysis and evaluation were described. Special emphasis is placed on recent speciation analysis approaches including both direct and coupling methods. A current summary of advantages and limitations of the various methods as well as an illustrative method comparison are presented. Certain elements and species of interest are briefly mentioned and practical examples of speciation applications in tobacco and other important economic crops are also discussed. Aim/Conclusion: This review aims to offer comprehensive knowledge about elemental speciation and provide readers with valuable information. Many strategies have been developed for the determination of multiple elemental species in tobacco and other important economic crops. Nevertheless, it is an eternal pursuit to establish speciation methods which can balance accuracy, agility as well as universality.


Shock Waves ◽  
2021 ◽  
Author(s):  
C. Garbacz ◽  
W. T. Maier ◽  
J. B. Scoggins ◽  
T. D. Economon ◽  
T. Magin ◽  
...  

AbstractThe present study aims at providing insights into shock wave interference patterns in gas flows when a mixture different than air is considered. High-energy non-equilibrium flows of air and $$\hbox {CO}_2$$ CO 2 –$$\hbox {N}_2$$ N 2 over a double-wedge geometry are studied numerically. The impact of freestream temperature on the non-equilibrium shock interaction patterns is investigated by simulating two different sets of freestream conditions. To this purpose, the SU2 solver has been extended to account for the conservation of chemical species as well as multiple energies and coupled to the Mutation++ library (Multicomponent Thermodynamic And Transport properties for IONized gases in C++) that provides all the necessary thermochemical properties of the mixture and chemical species. An analysis of the shock interference patterns is presented with respect to the existing taxonomy of interactions. A comparison between calorically perfect ideal gas and non-equilibrium simulations confirms that non-equilibrium effects greatly influence the shock interaction patterns. When thermochemical relaxation is considered, a type VI interaction is obtained for the $$\hbox {CO}_2$$ CO 2 -dominated flow, for both freestream temperatures of 300 K and 1000 K; for air, a type V six-shock interaction and a type VI interaction are obtained, respectively. We conclude that the increase in freestream temperature has a large impact on the shock interaction pattern of the air flow, whereas for the $$\hbox {CO}_2$$ CO 2 –$$\hbox {N}_2$$ N 2 flow the pattern does not change.


2014 ◽  
Vol 7 (1) ◽  
pp. 65-79 ◽  
Author(s):  
R. M. Stauffer ◽  
G. A. Morris ◽  
A. M. Thompson ◽  
E. Joseph ◽  
G. J. R. Coetzee ◽  
...  

Abstract. Several previous studies highlight pressure (or equivalently, pressure altitude) discrepancies between the radiosonde pressure sensor and that derived from a GPS flown with the radiosonde. The offsets vary during the ascent both in absolute and percent pressure differences. To investigate this problem further, a total of 731 radiosonde/ozonesonde launches from the Southern Hemisphere subtropics to northern mid-latitudes are considered, with launches between 2005 and 2013 from both longer term and campaign-based intensive stations. Five series of radiosondes from two manufacturers (International Met Systems: iMet, iMet-P, iMet-S, and Vaisala: RS80-15N and RS92-SGP) are analyzed to determine the magnitude of the pressure offset. Additionally, electrochemical concentration cell (ECC) ozonesondes from three manufacturers (Science Pump Corporation; SPC and ENSCI/Droplet Measurement Technologies; DMT) are analyzed to quantify the effects these offsets have on the calculation of ECC ozone (O3) mixing ratio profiles (O3MR) from the ozonesonde-measured partial pressure. Approximately half of all offsets are > ±0.6 hPa in the free troposphere, with nearly a third > ±1.0 hPa at 26 km, where the 1.0 hPa error represents ~ 5% of the total atmospheric pressure. Pressure offsets have negligible effects on O3MR below 20 km (96% of launches lie within ±5% O3MR error at 20 km). Ozone mixing ratio errors above 10 hPa (~ 30 km), can approach greater than ±10% (> 25% of launches that reach 30 km exceed this threshold). These errors cause disagreement between the integrated ozonesonde-only column O3 from the GPS and radiosonde pressure profile by an average of +6.5 DU. Comparisons of total column O3 between the GPS and radiosonde pressure profiles yield average differences of +1.1 DU when the O3 is integrated to burst with addition of the McPeters and Labow (2012) above-burst O3 column climatology. Total column differences are reduced to an average of −0.5 DU when the O3 profile is integrated to 10 hPa with subsequent addition of the O3 climatology above 10 hPa. The RS92 radiosondes are superior in performance compared to other radiosondes, with average 26 km errors of −0.12 hPa or +0.61% O3MR error. iMet-P radiosondes had average 26 km errors of −1.95 hPa or +8.75 % O3MR error. Based on our analysis, we suggest that ozonesondes always be coupled with a GPS-enabled radiosonde and that pressure-dependent variables, such as O3MR, be recalculated/reprocessed using the GPS-measured altitude, especially when 26 km pressure offsets exceed ±1.0 hPa/±5%.


2020 ◽  
Vol 500 (2) ◽  
pp. 2711-2731
Author(s):  
Andrew Bunting ◽  
Caroline Terquem

ABSTRACT We calculate the conversion from non-adiabatic, non-radial oscillations tidally induced by a hot Jupiter on a star to observable spectroscopic and photometric signals. Models with both frozen convection and an approximation for a perturbation to the convective flux are discussed. Observables are calculated for some real planetary systems to give specific predictions. The photometric signal is predicted to be proportional to the inverse square of the orbital period, P−2, as in the equilibrium tide approximation. However, the radial velocity signal is predicted to be proportional to P−1, and is therefore much larger at long orbital periods than the signal corresponding to the equilibrium tide approximation, which is proportional to P−3. The prospects for detecting these oscillations and the implications for the detection and characterization of planets are discussed.


2021 ◽  
Author(s):  
Ghazanfar Mehdi ◽  
Maria Grazia De Giorgi ◽  
Donato Fontanarosa ◽  
Sara Bonuso ◽  
Antonio Ficarella

Abstract This study focused on the comparative analysis about the production of ozone and active radicals in presence of nanopulsed plasma discharge on air and on fuel/air mixture to investigate its effect on combustion enhancement. This analysis is based on numerical modeling of air and methane/air plasma discharge with different repetition rates (100 Hz, 1000 Hz and 10000 Hz). To this purpose, a two-step approach has been proposed based on two different chemistry solvers: a 0-D plasma chemistry solver (ZDPlasKin toolbox) and a combustion chemistry solver (CHEMKIN software suite). Consequently, a comprehensive chemical kinetic scheme was generated including both plasma excitation reactions and gas phase reactions. Validation of air and methane/air mechanisms was performed with experimental data. Kinetic models of both air and methane/air provides good fitting with experimental data of O atom generation and decay process. ZDPlasKin results were introduced in CHEMKIN in order to analyze combustion enhancement. It was found that the concentrations of O3 and O atom in air are higher than the methane/air activation. However, during the air activation peak concentration of ozone was significantly increased with repetition rates and maximum was observed at 10000 Hz. Furthermore, ignition timings and flammability limits were also improved with air and methane/air activation but the impact of methane/air activation was comparatively higher.


Sign in / Sign up

Export Citation Format

Share Document