scholarly journals Accretion and jets in a low-luminosity AGN: the nucleus of NGC 1052

2020 ◽  
Vol 638 ◽  
pp. A67
Author(s):  
S. Falocco ◽  
J. Larsson ◽  
S. Nandi

Aims. We aim to determine the properties of the central region of NGC 1052 using X-ray and radio data. NGC 1052 (z = 0.005) has been investigated for decades in different energy bands and shows radio lobes and a low-luminosity active galactic nucleus. Methods. We used X-ray images from Chandra and radio images from Very Large Array to explore the morphology of the central area. We also studied the spectra of the nucleus and the surrounding region using observations from Chandra and XMM-Newton. Results. We find diffuse soft X-ray radiation and hot-spots along the radio lobes. The spectrum of the circum-nuclear region is well described by a thermal plasma (T ∼ 0.6 keV) and a power law with photon index Γ ∼ 2.3. The nucleus shows a hard power law (Γ ∼ 1.4) modified by complex absorption. A narrow iron Kα line is also clearly detected in all observations, but there is no evidence for relativistic reflection. Conclusions. The extended emission is consistent with originating from extended jets and from jet-triggered shocks in the surrounding medium. The hard power-law emission from the nucleus and the lack of relativistic reflection supports the scenario of inefficient accretion in an advection-dominated accretion flow.

Author(s):  
Tsubasa Tamba ◽  
Aya Bamba ◽  
Hirokazu Odaka ◽  
Teruaki Enoto

Abstract X-ray observations play a crucial role in understanding the emission mechanism and relevant physical phenomena of magnetars. We report on X-ray observations made in 2016 of a young magnetar, SGR 1900+14, which is famous for a giant flare in 1998 August. Simultaneous observations were conducted with XMM-Newton and NuSTAR on 2016 October 20 with 23 and 123 ks exposures, respectively. The NuSTAR hard X-ray coverage enabled us to detect the source up to 70 keV. The 1–10 keV and 15–60 keV fluxes were $3.11(3)\times 10^{-12} \, {\rm erg \, s^{-1} \, cm^{-2}}$ and $6.8(3)\times 10^{-12} \, {\rm erg \, s^{-1} \, cm^{-2}}$, respectively. The 1–70 keV spectra were fitted well by a blackbody plus power-law model with a surface temperature of $kT=0.52(2) \, {\rm keV}$, a photon index of the hard power-law of Γ = 1.21(6), and a column density of $N_{\,\rm H}=1.96(11)\times 10^{22} \, {\rm cm^{-2}}$. Compared with previous observations with Suzaku in 2006 and 2009, the 1–10 keV flux showed a decrease by 25%–40%, while the spectral shape did not show any significant change with differences of kT and NH being within 10% of each other. Through timing analysis, we found that the rotation period of SGR 1900+14 on 2016 October 20 was $5.22669(3) \, {\rm s}$. The long-term evolution of the rotation period shows a monotonic decrease in the spin-down rate $\dot{P}$ lasting for more than 15 yr. We also found characteristic behavior of the hard-tail power-law component of SGR 1900+14. The energy-dependent pulse profiles vary in morphology with a boundary of 10 keV. The phase-resolved spectra show the differences between photon indices (Γ = 1.02–1.44) as a function of the pulse phase. Furthermore, the photon index is positively correlated with the X-ray flux of the hard power-law component, which could not be resolved by the previous hard X-ray observations.


2008 ◽  
Vol 17 (09) ◽  
pp. 1483-1489
Author(s):  
JUN KATAOKA

We present the results from multiwavelength campaigns of three powerful gamma-ray quasars, PKS 1510-089, RBS 315 and Swift J0746.3+2548, recently organized with Suzaku. The Suzaku observation provided one of the highest S/N X-ray spectra ever reported between 0.3 and 50 keV. For these quasars, the X-ray spectrum is well represented by an extremely hard power-law with photon index Γ ≃ 1.2, but is augmented by an additional soft component apparently below 1 keV for PKS 1510-089, whereas a strong deficit of soft photons is observed in RBS 315. We model the broadband spectra of these powerful quasars and argue that the power of the jet is dominated by protons but with the number of electrons/positrons exceeding the number of protons by a factor ≃ 10. We also argue that an extremely hard X-ray spectra may result from a double power-law form of the injected electrons, with the break energy γ br ≃ 1000 corresponding to the anticipated threshold of diffusive shock acceleration.


Universe ◽  
2020 ◽  
Vol 6 (11) ◽  
pp. 219
Author(s):  
Elena Fedorova ◽  
B.I. Hnatyk ◽  
V.I. Zhdanov ◽  
A. Del Popolo

3C111 is BLRG with signatures of both FSRQ and Sy1 in X-ray spectrum. The significant X-ray observational dataset was collected for it by INTEGRAL, XMM-Newton, SWIFT, Suzaku and others. The overall X-ray spectrum of 3C 111 shows signs of a peculiarity with the large value of the high-energy cut-off typical rather for RQ AGN, probably due to the jet contamination. Separating the jet counterpart in the X-ray spectrum of 3C 111 from the primary nuclear counterpart can answer the question is this nucleus truly peculiar or this is a fake “peculiarity” due to a significant jet contribution. In view of this question, our aim is to estimate separately the accretion disk/corona and non-thermal jet emission in the 3C 111 X-ray spectra within different observational periods. To separate the disk/corona and jet contributions in total continuum, we use the idea that radio and X-ray spectra of jet emission can be described by a simple power-law model with the same photon index. This additional information allows us to derive rather accurate values of these contributions. In order to test these results, we also consider relations between the nuclear continuum and the line emission.


2016 ◽  
Vol 12 (S324) ◽  
pp. 123-126
Author(s):  
Richard Saxton ◽  
S. Komossa ◽  
Andrew Read ◽  
Paulina Lira ◽  
Kate D. Alexander ◽  
...  

AbstractXMM-Newton performs a survey of the sky in the 0.2-12 keV X-ray band while slewing between observation targets. The sensitivity in the soft X-ray band is comparable with that of the ROSAT all-sky survey, allowing bright transients to be identified in near real-time by a comparison of the flux in both surveys. Several of the soft X-ray flares are coincident with galaxy nuclei and five of these have been interpreted as candidate tidal disruption events (TDE). The first three discovered had a soft X-ray spectrum, consistent with the classical model of TDE, where radiation is released during the accretion phase by thermal processes. The remaining two have an additional hard, power-law component, which in only one case was accompanied by radio emission. Overall the flares decay with the classical index of t−5/3 but vary greatly in the early phase.


2020 ◽  
Vol 496 (4) ◽  
pp. 5518-5527
Author(s):  
N Sahakyan

ABSTRACT The origin of the multiwavelength emission from the high-synchrotron-peaked BL Lac 1ES 1218+304 is studied using the data from SwiftUVOT/XRT, NuSTAR, and Fermi-LAT. A detailed temporal and spectral analysis of the data observed during 2008–2020 in the  γ-ray (>100 MeV), X-ray (0.3–70 keV), and optical/UV bands is performed. The γ-ray spectrum is hard with a photon index of 1.71 ± 0.02 above 100 MeV. The SwiftUVOT/XRT data show a flux increase in the UV/optical and X-ray bands; the highest 0.3–3 keV X-ray flux was (1.13 ± 0.02) × 10−10 erg cm−2 s−1. In the 0.3–10 keV range, the averaged X-ray photon index is >2.0 which softens to 2.56 ± 0.028 in the 3–50 keV band. However, in some periods, the X-ray photon index became extremely hard (<1.8), indicating that the peak of the synchrotron component was above 1 keV, and so 1ES 1218+304 behaved like an extreme synchrotron BL Lac. The hardest X-ray photon index of 1ES 1218+304 was 1.60 ± 0.05 on MJD 58489. The time-averaged multiwavelength spectral energy distribution is modelled within a one-zone synchrotron self-Compton leptonic model using a broken power law and power law with an exponential cutoff electron energy distributions. The data are well explained when the electron energy distribution is $E_{\rm e}^{-2.1}$ extending up to γbr/cut ≃ (1.7 − 4.3) × 105, and the magnetic field is weak (B ∼ 1.5 × 10−2 G). By solving the kinetic equation for electron evolution in the emitting region, the obtained electron energy distributions are discussed considering particle injection, cooling, and escape.


1996 ◽  
Vol 165 ◽  
pp. 363-367
Author(s):  
W.S. Paciesas ◽  
S.N. Zhang ◽  
B.C. Rubin ◽  
B.A. Harmon ◽  
C.A. Wilson ◽  
...  

A bright transient X-ray source, GRO J1655-40 (X-ray Nova Scorpii 1994) was discovered with BATSE (the Burst and Transient Source Experiment) in late July 1994. More recently, the source also became a strong radio emitter, its rise in the radio being approximately anti-correlated with a decline in the hard X-ray intensity. High-resolution radio observations subsequent to this symposium showed evidence for superluminally expanding jets. Since the hard X-ray emission extends to at least 200 keV and we find no evidence of pulsations, we tentatively classify the source as a black-hole candidate. However, its hard X-ray spectrum is unusually steep (power-law photon index α ≃ −3) relative to most other black-hole candidates. In this regard, it resembles GRS 1915+105, the first galactic source to show superluminal radio jets.


2019 ◽  
Vol 623 ◽  
pp. A115 ◽  
Author(s):  
L. Duvidovich ◽  
E. Giacani ◽  
G. Castelletti ◽  
A. Petriella ◽  
L. Supán

Aims. The goal of this paper is to detect synchrotron emission from the relic electrons of the crushed pulsar wind nebula (PWN) HESS J1825−137 and to investigate the origin of the γ-ray emission from HESS J1826−130. Methods. The study of HESS J1825−137 was carried out on the basis of new radio observations centred at the position of PSR J1826−1334 performed with the Karl G. Jansky Very Large Array at 1.4 GHz in configurations B and C. To investigate the nature of HESS J1826−130, we reprocessed unpublished archival data obtained with XMM-Newton. Results. The new radio continuum image towards PSR J1826−1334 reveals a bright radio source, with the pulsar located in its centre, which suggests that this feature could be the radio counterpart of the compact component of the PWN detected at high energy. The new 1.4 GHz radio data do not reveal emission with an extension comparable with that observed in γ-rays for the HESS J1825−137 source. On the other hand, the XMM-Newton study of the region including PSR J1826−1256 reveals an elongated non-thermal X-ray emitting nebula with the pulsar located in the northern border and a tail towards the peak of the very high energy source. The spectrum is characterized by a power law with a photon index going from 1.6 around the pulsar to 2.7 in the borders of the nebula, a behaviour consistent with synchrotron cooling of electrons. From our X-ray analysis we propose that HESS J1826−130 is likely produced by the PWN powered by PSR J1826−1256 via the inverse Compton mechanism.


1998 ◽  
Vol 184 ◽  
pp. 479-480 ◽  
Author(s):  
Y. Terashima ◽  
H. Kunieda ◽  
P.J. Serlemitsos ◽  
A. Ptak

We present X-ray observations of LINERs with ASCA. We detected a hard point-like source of X-ray luminosity of 1040–1041 erg s−1 at the nucleus. Their hard X-ray continuum is well represented by power-law of photon index ~ 1.8. The X-ray to Hα luminosity ratio LX/LHα is quite similar to Seyfert galaxies and strongly support the presence of low luminosity AGNs.


1989 ◽  
Vol 134 ◽  
pp. 167-172
Author(s):  
Katsuji Koyama

X-ray emission in the 2–10 keV energy range was observed with the Ginga satellite from the Seyfert 2 galaxy NGC1068. The continuum spectrum can be described by a power-law of photon index about 1.5. An intense iron line at 6.5 keV with an equivalent width of 1.3 keV was clearly noticed. The X-ray flux was about 6 × 10 −12 erg/sec/cm2 or 3 × 1041 erg/sec, assuming a distance of 22 Mpc. The observed spectrum is consistent with the scattering and reprocessing of X-rays by the gas surrounding the central engine. With this picture we estimate that the X-ray flux of the central engine is about 1043 - 1044 erg/sec, a typical value for a Seyfert 1 galaxy.


2020 ◽  
Vol 494 (1) ◽  
pp. 1128-1132
Author(s):  
Geoff Beck

ABSTRACT The electron population inferred to be responsible for the mini-halo within the Ophiuchus galaxy cluster is a steep power law in energy with a slope of 3.8. This is substantially different to that predicted by dark matter (DM) annihilation models. In this work, we present a method of indirect comparison between the observed electron spectrum and that predicted for indirect DM emissions. This method utilizes differences in the consequences of a given electron distribution on the subsequent spectral features of synchrotron emissions. To fully exploit this difference, by leveraging the fact that the peak and cut-off synchrotron frequencies are substantially different to hard power-law cases for WIMP masses above ∼50 GeV, we find that we need μJy sensitivities at frequencies above 10 GHz while being sensitive to arcminute scales. We explore the extent to which this electron spectrum comparison can be validated with the up-coming next-generation Very Large Array (ngVLA) instrument. We show that, with the ngVLA, this method allows us to produce far stronger constraints than existing VLA data, indeed these exceed the Fermi-LAT dwarf searches in a wide variety of annihilation channels and for all studied magnetic field scenarios.


Sign in / Sign up

Export Citation Format

Share Document