scholarly journals Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories

2020 ◽  
Vol 642 ◽  
pp. A4 ◽  
Author(s):  
M. Velli ◽  
L. K. Harra ◽  
A. Vourlidas ◽  
N. Schwadron ◽  
O. Panasenco ◽  
...  

Context. The launch of Parker Solar Probe (PSP) in 2018, followed by Solar Orbiter (SO) in February 2020, has opened a new window in the exploration of solar magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to solar observations, such as the Solar Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-wavelength observations including the DKIST observatory that has just seen first light, promise to revolutionize our understanding of the solar atmosphere and of solar activity, from the generation and emergence of the Sun’s magnetic field to the creation of the solar wind and the acceleration of solar energetic particles. Aims. Here we describe the scientific objectives of the PSP and SO missions, and highlight the potential for discovery arising from synergistic observations. Here we put particular emphasis on how the combined remote sensing and in situ observations of SO, that bracket the outer coronal and inner heliospheric observations by PSP, may provide a reconstruction of the solar wind and magnetic field expansion from the Sun out to beyond the orbit of Mercury in the first phases of the mission. In the later, out-of-ecliptic portions of the SO mission, the solar surface magnetic field measurements from SO and the multi-point white-light observations from both PSP and SO will shed light on the dynamic, intermittent solar wind escaping from helmet streamers, pseudo-streamers, and the confined coronal plasma, and on solar energetic particle transport. Methods. Joint measurements during PSP–SO alignments, and magnetic connections along the same flux tube complemented by alignments with Earth, dual PSP–Earth, and SO-Earth, as well as with STEREO-A, SOHO, and BepiColumbo will allow a better understanding of the in situ evolution of solar-wind plasma flows and the full three-dimensional distribution of the solar wind from a purely observational point of view. Spectroscopic observations of the corona, and optical and radio observations, combined with direct in situ observations of the accelerating solar wind will provide a new foundation for understanding the fundamental physical processes leading to the energy transformations from solar photospheric flows and magnetic fields into the hot coronal plasma and magnetic fields and finally into the bulk kinetic energy of the solar wind and solar energetic particles. Results. We discuss the initial PSP observations, which already provide a compelling rationale for new measurement campaigns by SO, along with ground- and space-based assets within the synergistic context described above.

1971 ◽  
Vol 12 ◽  
pp. 567-575 ◽  
Author(s):  
Eugene W. Greenstadt

Investigation of extraterrestrial objects is habitually accompanied by the observation of extraterrestrial magnetic fields, which often have significant effects on the solar wind in the vicinity of the objects. Should we be surprised to find this experience repeated at an asteroid?A recent study considered the conditions that would have to be satisfied by the surface magnetic field of a small planetary body at asteroidal distances so that the field would be an obstacle capable of stopping the solar wind or deflecting it sufficiently to generate a detectable magnetic interaction (Greenstadt, 1971).


2020 ◽  
Author(s):  
Beatriz Sanchez-Cano ◽  
Clara Narvaez ◽  
Mark Lester ◽  
Michael Mendillo ◽  
Majd Mayyasi ◽  
...  

<p>The ionopause is a tangential discontinuity in the ionospheric thermal plasma density profile that marks the upper boundary of the ionosphere for unmagnetized planets. Since only Venus and Mars have no global “dipole” magnetic fields, ionopauses are unique to those planets. For Venus, the ionopause formation is well characterized because the thermal pressure of the ionosphere is usually larger than the solar wind dynamic pressure. For Mars, however, the maximum thermal pressure of the ionosphere is usually insufficient to balance the total pressure in the overlying magnetic pileup boundary. Therefore, the Martian ionopause is not always formed, and when it does, it is highly structured and is located at different altitudes. In this study, we characterise the Martian ionopause formation from the point of view of the electron density and electron temperature, as well as the thermal, magnetic and dynamic pressures. The objective is to investigate under which circumstances the Martian ionopause is formed, both over and far from crustal magnetic fields, and compare to the Venus’ case. We use several multi-plasma and magnetic field in-situ observations from the three deep dip campaigns of the MAVEN mission that occurred on the dayside of Mars (near subsolar point), as well as in-situ solar wind plasma observations from the Mars Express mission. We find that that 36% of the electron density profiles over strong crustal magnetic field regions had an ionopause event in contrast to the 54% of electron density profiles far from strong crustal magnetic field regions. We also find that the topside ionosphere is typically magnetized at mostly all altitudes. The ionopause, if formed, occurs where the total ionospheric pressure (magnetic+thermal) equals the upstream solar wind dynamic pressure.</p>


2017 ◽  
Vol 13 (S335) ◽  
pp. 65-68
Author(s):  
Nandita Srivastava ◽  
Zavkiddin Mirtoshev ◽  
Wageesh Mishra

AbstractWe have studied the consequences of interacting coronal mass ejections (CMEs) of June 13-14, 2012 which were directed towards Earth and caused a moderate geomagnetic storm with Dst index ~ −86 nT. We analysed the in-situ observations of the solar wind plasma and magnetic field parameters obtained from the OMNI database for these CMEs. The in-situ observations show that the interacting CMEs arrive at Earth with the strongest (~ 150 nT) Sudden Storm Commencement (SSC) of the solar cycle 24. We compared these interacting CMEs to a similar interaction event which occurred during November 9-10, 2012. This occurred in the same phase of the solar cycle 24 but resulted in an intense geomagnetic storm (Dst ~ −108 nT), as reported by Mishra et al. (2015). Our analysis shows that in the June event, the interaction led to a merged structure at 1 AU while in the case of November 2012 event, the interacted CMEs arrived as two distinct structures at 1 AU. The geomagnetic signatures of the two cases reveal that both resulted in a single step geomagnetic storm.


2021 ◽  
Vol 257 (2) ◽  
pp. 32
Author(s):  
Man Zhang ◽  
Xueshang Feng ◽  
Xiaojing Liu ◽  
Liping Yang

Abstract In this paper, we present a provably positive, divergence-free constrained transport (CT) scheme to simulate the steady-state solar wind ambient with the three-dimensional magnetohydrodynamics numerical model. The positivity can be lost in two ways: one way is in the reconstruction process, and the other is in the updating process when the variables are advanced to the next time step. We adopt a self-adjusting strategy to bring the density and pressure into the permitted range in the reconstruction process, and use modified wave speeds in the Harten–Lax–van Leer flux to ensure the positivity in the updating process. The CT method can keep the magnetic fields divergence-free if the magnetic fields are divergence-free initially. Thus, we combine the least-squares reconstruction of the magnetic fields with the divergence-free constraints to make the magnetic fields globally solenoidal initially. Furthermore, we adopt a radial basis function method to interpolate variables at boundaries that can keep the magnetic field locally divergence-free. To verify the capability of the model in producing structured solar wind, the modeled results are compared with Parker Solar Probe (PSP) in situ observations during its first two encounters, as well as Wind observations at 1 au. Additionally, a solar maximum solar wind background is simulated to show the property of the model’s ability to preserve the positivity. The results show that the model can provide a relatively satisfactory comparison with PSP or Wind observations, and the divergence error is about 10−10 for all of the tests in this paper.


2019 ◽  
Author(s):  
Valentina Guccini ◽  
Sugam Kumar ◽  
Yulia Trushkina ◽  
Gergely Nagy ◽  
Christina Schütz ◽  
...  

The magnetic alignment of cellulose nanocrystals (CNC) and lepidocrocite nanorods (LpN), pristine and in hybrid suspensions has been investigated using contrast-matched small-angle neutron scattering (SANS) under in situ magnetic fields (0 – 6.8 T) and polarized optical microscopy. The pristine CNC (diamagnetic) and pristine LpN (paramagnetic) align perpendicular and parallel to the direction of field, respectively. The alignment of both the nanoparticles in their hybrid suspensions depends on the relative amount of the two components (CNC and LpN) and strength of the applied magnetic field. In the presence of 10 wt% LpN and fields < 1.0 T, the CNC align parallel to the field. In the hybrid containing lower amount of LpN (1 wt%), the ordering of CNC is partially frustrated in all range of magnetic field. At the same time, the LpN shows both perpendicular and parallel orientation, in the presence of CNC. This study highlights that the natural perpendicular ordering of CNC can be switched to parallel by weak magnetic fields and the incorporation of paramagnetic nanoparticle as LpN, as well it gives a method to influence the orientation of LpN.<br>


Author(s):  
Z Keszthelyi ◽  
G Meynet ◽  
F Martins ◽  
A de Koter ◽  
A David-Uraz

Abstract τ Sco, a well-studied magnetic B-type star in the Uτer Sco association, has a number of surprising characteristics. It rotates very slowly and shows nitrogen excess. Its surface magnetic field is much more complex than a purely dipolar configuration which is unusual for a magnetic massive star. We employ the cmfgen radiative transfer code to determine the fundamental parameters and surface CNO and helium abundances. Then, we employ mesa and genec stellar evolution models accounting for the effects of surface magnetic fields. To reconcile τ Sco’s properties with single-star models, an increase is necessary in the efficiency of rotational mixing by a factor of 3 to 10 and in the efficiency of magnetic braking by a factor of 10. The spin down could be explained by assuming a magnetic field decay scenario. However, the simultaneous chemical enrichment challenges the single-star scenario. Previous works indeed suggested a stellar merger origin for τ Sco. However, the merger scenario also faces similar challenges as our magnetic single-star models to explain τ Sco’s simultaneous slow rotation and nitrogen excess. In conclusion, the single-star channel seems less likely and versatile to explain these discrepancies, while the merger scenario and other potential binary-evolution channels still require further assessment as to whether they may self-consistently explain the observables of τ Sco.


2016 ◽  
Vol 12 (S329) ◽  
pp. 369-372
Author(s):  
C. L. Fletcher ◽  
V. Petit ◽  
Y. Nazé ◽  
G. A. Wade ◽  
R. H. Townsend ◽  
...  

AbstractRecent spectropolarimetric surveys of bright, hot stars have found that ~10% of OB-type stars contain strong (mostly dipolar) surface magnetic fields (~kG). The prominent paradigm describing the interaction between the stellar winds and the surface magnetic field is the magnetically confined wind shock (MCWS) model. In this model, the stellar wind plasma is forced to move along the closed field loops of the magnetic field, colliding at the magnetic equator, and creating a shock. As the shocked material cools radiatively it will emit X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and characterizing the hot wind material confined by the magnetic fields of these stars. Some B-type stars are found to have very short rotational periods. The effects of the rapid rotation on the X-ray production within the magnetosphere have yet to be explored in detail. The added centrifugal force due to rapid rotation is predicted to cause faster wind outflows along the field lines, leading to higher shock temperatures and harder X-rays. However, this is not observed in all rapidly rotating magnetic B-type stars. In order to address this from a theoretical point of view, we use the X-ray Analytical Dynamical Magnetosphere (XADM) model, originally developed for slow rotators, with an implementation of new rapid rotational physics. Using X-ray spectroscopy from ESA’s XMM-Newton space telescope, we observed 5 rapidly rotating B-types stars to add to the previous list of observations. Comparing the observed X-ray luminosity and hardness ratio to that predicted by the XADM allows us to determine the role the added centrifugal force plays in the magnetospheric X-ray emission of these stars.


2003 ◽  
Vol 21 (8) ◽  
pp. 1709-1722 ◽  
Author(s):  
E. J. Bunce ◽  
S. W. H. Cowley ◽  
J. A. Wild

Abstract. We calculate the azimuthal magnetic fields expected to be present in Saturn’s magnetosphere associated with two physical effects, and compare them with the fields observed during the flybys of the two Voyager spacecraft. The first effect is associated with the magnetosphere-ionosphere coupling currents which result from the sub-corotation of the magnetospheric plasma. This is calculated from empirical models of the plasma flow and magnetic field based on Voyager data, with the effective Pedersen conductivity of Saturn’s ionosphere being treated as an essentially free parameter. This mechanism results in a ‘lagging’ field configuration at all local times. The second effect is due to the day-night asymmetric confinement of the magnetosphere by the solar wind (i.e. the magnetopause and tail current system), which we have estimated empirically by scaling a model of the Earth’s magnetosphere to Saturn. This effect produces ‘leading’ fields in the dusk magnetosphere, and ‘lagging’ fields at dawn. Our results show that the azimuthal fields observed in the inner regions can be reasonably well accounted for by plasma sub-corotation, given a value of the effective ionospheric Pedersen conductivity of ~ 1–2 mho. This statement applies to field lines mapping to the equator within ~ 8 RS (1 RS is taken to be 60 330 km) of the planet on the dayside inbound passes, where the plasma distribution is dominated by a thin equatorial heavy-ion plasma sheet, and to field lines mapping to the equator within ~ 15 RS on the dawn side outbound passes. The contributions of the magnetopause-tail currents are estimated to be much smaller than the observed fields in these regions. If, however, we assume that the azimuthal fields observed in these regions are not due to sub-corotation but to some other process, then the above effective conductivities define an upper limit, such that values above ~ 2 mho can definitely be ruled out. Outside of this inner region the spacecraft observed both ‘lagging’ and ‘leading’ fields in the post-noon dayside magnetosphere during the inbound passes, with ‘leading’ fields being observed both adjacent to the magnetopause and in the ring current region, and ‘lagging’ fields being observed between. The observed ‘lagging’ fields are consistent in magnitude with the sub-corotation effect with an effective ionospheric conductivity of ~ 1–2 mho, while the ‘leading’ fields are considerably larger than those estimated for the magnetopause-tail currents, and appear to be indicative of the presence of another dynamical process. No ‘leading’ fields were observed outside the inner region on the dawn side outbound passes, with the azimuthal fields first falling below those expected for sub-corotation, before increasing, to exceed these values at radial distances beyond ~ 15–20 RS , where the effect of the magnetopause-tail currents becomes significant. As a by-product, our investigation also indicates that modification and scaling of terrestrial magnetic field models may represent a useful approach to modelling the three-dimensional magnetic field at Saturn.Key words. Magnetospheric physics (current systems; magnetosphere-ionosphere interactions; solar wind-magnetosphere interactions)


2021 ◽  
Author(s):  
David Ruffolo ◽  
Rohit Chhiber ◽  
William H. Matthaeus ◽  
Arcadi V. Usmanov ◽  
Paisan Tooprakai ◽  
...  

&lt;p&gt;The random walk of magnetic field lines is an important ingredient in understanding how the connectivity of the magnetic field affects the spatial transport and diffusion of charged particles. As solar energetic particles (SEPs) propagate away from near-solar sources, they interact with the fluctuating magnetic field, which modifies their distributions. We develop a formalism in which the differential equation describing the field line random walk contains both effects due to localized magnetic displacements and a non-stochastic contribution from the large-scale expansion. We use this formalism together with a global magnetohydrodynamic simulation of the inner-heliospheric solar wind, which includes a turbulence transport model, to estimate the diffusive spreading of magnetic field lines that originate in different regions of the solar atmosphere. We first use this model to quantify field line spreading at 1 au, starting from a localized solar source region, and find rms angular spreads of about 20 &amp;#8211; 60 degrees. In the second instance, we use the model to estimate the size of the source regions from which field lines observed at 1 au may have originated, thus quantifying the uncertainty in calculations of magnetic connectivity; the angular uncertainty is estimated to be about 20 degrees. Finally, we estimate the filamentation distance, i.e., the heliocentric distance up to which field lines originating in magnetic islands can remain strongly trapped in filamentary structures. We emphasize the key role of slab-like fluctuations in the transition from filamentary to more diffusive transport at greater heliocentric distances. This research has been supported in part by grant RTA6280002 from Thailand Science Research and Innovation and the Parker Solar Probe mission under the ISOIS project (contract NNN06AA01C) and a subcontract to University of Delaware from Princeton University (SUB0000165). &amp;#160;MLG acknowledges support from the Parker Solar Probe FIELDS MAG team. &amp;#160;Additional support is acknowledged from the&amp;#160; NASA LWS program&amp;#160; (NNX17AB79G) and the HSR program (80NSSC18K1210 &amp; 80NSSC18K1648).&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document