scholarly journals LENSINGGW: a PYTHON package for lensing of gravitational waves

2020 ◽  
Vol 643 ◽  
pp. A167
Author(s):  
G. Pagano ◽  
O. A. Hannuksela ◽  
T. G. F. Li

Advanced LIGO and Advanced Virgo might be able to observe the first lensed gravitational waves in the coming years. With the addition of the KAGRA and LIGO India detectors to the detector network and with the future construction of the Einstein Telescope we might be able to observe hundreds of lensed events. Ground-based gravitational-wave detectors can resolve arrival-time differences on the order of the inverse of the observed frequencies. The LIGO and Virgo frequency band spans from a few Hz to a few kHz, therefore the typical time resolution of current interferometers is on the order of milliseconds. When microlenses are embedded in galaxies or galaxy clusters, lensing can become more prominent and result in observable time delays at LIGO and Virgo frequencies. Therefore, gravitational waves might offer an exciting alternative probe of microlensing. However, only a few lensing configurations have currently been worked out in the context of gravitational-wave lensing. In this paper, we present LENSINGGW, a PYTHON package designed to handle both strong lensing and microlensing of compact binaries and the related gravitational-wave signals in the geometrical optics limit. This synergy paves the way for systematic parameter space investigations and for the detection of arbitrary lens configurations and compact sources. Here we focus on the LIGO and Virgo frequencies. We demonstrate the working mechanism of LENSINGGW and its use in studying microlenses that are embedded in galaxies.

2000 ◽  
Vol 09 (03) ◽  
pp. 325-329 ◽  
Author(s):  
SUKANTA BOSE ◽  
ARCHANA PAI ◽  
SANJEEV DHURANDHAR

We formulate the data analysis problem for the detection of the Newtonian waveform from an inspiraling, compact binary by a network of arbitrarily oriented and arbitrarily located laser interferometric gravitational-wave detectors. We obtain for the first time the relation between the optimal statistic and the magnitude of the network correlation vector, which is constructed from the matched network-filter.


2021 ◽  
Vol 502 (4) ◽  
pp. 4680-4688
Author(s):  
Ankan Sur ◽  
Brynmor Haskell

ABSTRACT In this paper, we study the spin-evolution and gravitational-wave luminosity of a newly born millisecond magnetar, formed either after the collapse of a massive star or after the merger of two neutron stars. In both cases, we consider the effect of fallback accretion; and consider the evolution of the system due to the different torques acting on the star, namely the spin-up torque due to accretion and spin-down torques due to magnetic dipole radiation, neutrino emission, and gravitational-wave emission linked to the formation of a ‘mountain’ on the accretion poles. Initially, the spin period is mostly affected by the dipole radiation, but at later times, accretion spin the star up rapidly. We find that a magnetar formed after the collapse of a massive star can accrete up to 1 M⊙, and survive on the order of 50 s before collapsing to a black hole. The gravitational-wave strain, for an object located at 1 Mpc, is hc ∼ 10−23 at kHz frequencies, making this a potential target for next-generation ground-based detectors. A magnetar formed after a binary neutron star merger, on the other hand, accretes at the most 0.2 M⊙ and emits gravitational waves with a lower maximum strain of the order of hc ∼ 10−24, but also survives for much longer times, and may possibly be associated with the X-ray plateau observed in the light curve of a number of short gamma-ray burst.


Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 97
Author(s):  
Nils Andersson

We provide a bird’s-eye view of neutron-star seismology, which aims to probe the extreme physics associated with these objects, in the context of gravitational-wave astronomy. Focussing on the fundamental mode of oscillation, which is an efficient gravitational-wave emitter, we consider the seismology aspects of a number of astrophysically relevant scenarios, ranging from transients (like pulsar glitches and magnetar flares), to the dynamics of tides in inspiralling compact binaries and the eventual merged object and instabilities acting in isolated, rapidly rotating, neutron stars. The aim is not to provide a thorough review, but rather to introduce (some of) the key ideas and highlight issues that need further attention.


2017 ◽  
Vol 26 (12) ◽  
pp. 1742005 ◽  
Author(s):  
R. R. Caldwell ◽  
C. Devulder ◽  
N. A. Maksimova

The dynamics of a gravitational wave propagating through a cosmic gauge field are dramatically different than in vacuum. We show that a gravitational wave acquires an effective mass, is birefringent, and its normal modes are a linear combination of gravitational waves and gauge field excitations, leading to the phenomenon of gravitational wave–gauge field oscillations. These surprising results provide an insight into gravitational phenomena and may suggest new approaches to a theory of quantum gravity.


2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Vitor Cardoso ◽  
Caio F. B. Macedo ◽  
Rodrigo Vicente

2021 ◽  
Vol 504 (2) ◽  
pp. 2224-2234
Author(s):  
Nan Li ◽  
Christoph Becker ◽  
Simon Dye

ABSTRACT Measurements of the Hubble–Lemaitre constant from early- and local-Universe observations show a significant discrepancy. In an attempt to understand the origin of this mismatch, independent techniques to measure H0 are required. One such technique, strong lensing time delays, is set to become a leading contender amongst the myriad methods due to forthcoming large strong lens samples. It is therefore critical to understand the systematic effects inherent in this method. In this paper, we quantify the influence of additional structures along the line of sight by adopting realistic light-cones derived from the cosmoDC2 semi-analytical extragalactic catalogue. Using multiple-lens plane ray tracing to create a set of simulated strong lensing systems, we have investigated the impact of line-of-sight structures on time-delay measurements and in turn, on the inferred value of H0. We have also tested the reliability of existing procedures for correcting for line-of-sight effects. We find that if the integrated contribution of the line-of-sight structures is close to a uniform mass sheet, the bias in H0 can be adequately corrected by including a constant external convergence κext in the lens model. However, for realistic line-of-sight structures comprising many galaxies at different redshifts, this simple correction overestimates the bias by an amount that depends linearly on the median external convergence. We therefore conclude that lens modelling must incorporate multiple-lens planes to account for line-of-sight structures for accurate and precise inference of H0.


Author(s):  
Ram Brustein ◽  
Yotam Sherf

The response of a gravitating object to an external tidal field is encoded in its Love numbers, which identically vanish for classical black holes (BHs). Here we show, using standard time-independent quantum perturbation theory, that for a quantum BH, generically, the Love numbers are nonvanishing and negative. We calculate the quadrupolar electric quantum Love number of slowly rotating BHs and show that it depends most strongly on the first excited level of the quantum BH. Finally, we discuss the detectability of the quadrupolar quantum Love number in future precision gravitational-wave observations and show that, under favourable circumstances, its magnitude is large enough to imprint an observable signature on the gravitational waves emitted during the inspiral. Phase of two moderately spinning BHs.


2020 ◽  
Vol 499 (1) ◽  
pp. L53-L57
Author(s):  
Shu-Cheng Yang ◽  
Wen-Biao Han ◽  
Gang Wang

ABSTRACT The weak equivalence principle (WEP) is the cornerstone of gravitational theories. At the local scale, WEP has been tested to high accuracy by various experiments. On the intergalactic distance scale, WEP could be tested by comparing the arrival time of different messengers emitted from the same source. The gravitational time delay caused by massive galaxies is proportional to γ + 1, where the parameter γ is unity in general relativity. The values of γ for different massless particles should be different if WEP is violated, i.e. Δγ is used to indicate the deviation from WEP. So far, |Δγ| has been constrained with gamma-ray bursts, fast radio bursts, etc. Here, we report a new constraint of |Δγ| by using the gravitational wave data of binary black hole coalescences in the LIGO–Virgo catalogue GWTC-1. The best constraints imply that |Δγ| ≲ 10−15 at 90 per cent confidence level.


Sign in / Sign up

Export Citation Format

Share Document