scholarly journals Planck’s Dusty GEMS

2021 ◽  
Vol 645 ◽  
pp. A45
Author(s):  
R. Cañameras ◽  
N. P. H. Nesvadba ◽  
R. Kneissl ◽  
S. König ◽  
C. Yang ◽  
...  

We present ALMA, NOEMA, and IRAM-30 m/EMIR observations of the high-density tracer molecules HCN, HCO+, and HNC in three of the brightest lensed dusty star-forming galaxies at z ≃ 3–3.5, part of the Planck’s Dusty Gravitationally Enhanced subMillimetre Sources (GEMS), with the aim of probing the gas reservoirs closely associated with their exceptional levels of star formation. We obtained robust detections of ten emission lines between Jup = 4 and 6, as well as several additional upper flux limits. In PLCK_G244.8+54.9, the brightest source at z = 3.0, the HNC(5–4) line emission at 0.1″ resolution, together with other spatially-integrated line profiles, suggests comparable distributions of dense and more diffuse gas reservoirs, at least over the most strongly magnified regions. This rules out any major effect from differential lensing. This line is blended with CN(4–3) and in this source, we measure a HNC(5–4)/CN(4–3) flux ratio of 1.76 ±0. 86. Dense-gas line profiles generally match those of mid-J CO lines, except in PLCK_G145.2+50.8, which also has dense-gas line fluxes that are relatively lower, perhaps due to fewer dense cores and more segregated dense and diffuse gas phases in this source. The HCO+/HCN ≳ 1 and HNC/HCN ∼ 1 line ratios in our sample are similar to those of nearby ultraluminous infrared galaxies (ULIRGs) and consistent with photon-dominated regions without any indication of important mechanical heating or active galactic nuclei feedback. We characterize the dense-gas excitation in PLCK_G244.8+54.9 using radiative transfer models assuming pure collisional excitation and find that mid-J HCN, HCO+, and HNC lines arise from a high-density phase with an H2 density of n  ∼  105–106 cm−3, although important degeneracies hinder a determination of the exact conditions. The three GEMS are consistent with extrapolations of dense-gas star-formation laws derived in the nearby Universe, adding further evidence that the extreme star-formation rates observed in the most active galaxies at z ∼ 3 are a consequence of their important dense-gas contents. The dense-gas-mass fractions traced by HCN/[CI] and HCO+/[CI] line ratios are elevated, but not exceptional as compared to other lensed dusty star-forming galaxies at z >  2, and they fall near the upper envelope of local ULIRGs. Despite the higher overall gas fractions and local gas-mass surface densities observed at high redshift, the dense-gas budget of rapidly star-forming galaxies seems to have evolved little between z ∼ 3 and z ∼ 0. Our results favor constant dense-gas depletion times in these populations, which is in agreement with theoretical models of star formation.

2018 ◽  
Vol 620 ◽  
pp. A115 ◽  
Author(s):  
M. Béthermin ◽  
T. R. Greve ◽  
C. De Breuck ◽  
J. D. Vieira ◽  
M. Aravena ◽  
...  

The origin of the high star formation rates (SFR) observed in high-redshift dusty star-forming galaxies is still unknown. Large fractions of dense molecular gas might provide part of the explanation, but there are few observational constraints on the amount of dense gas in high-redshift systems dominated by star formation. In this paper, we present the results of our Atacama large millimeter array (ALMA) program targeting dense-gas tracers (HCN(5-4), HCO+(5-4), and HNC(5-4)) in five strongly lensed galaxies from the South Pole Telescope (SPT) submillimeter galaxy sample. We detected two of these lines (S/N > 5) in SPT-125-47 at z = 2.51 and tentatively detected all three (S/N ∼ 3) in SPT0551-50 at z = 3.16. Since a significant fraction of our target lines is not detected, we developed a statistical method to derive unbiased mean properties of our sample taking into account both detections and non-detections. On average, the HCN(5-4) and HCO+(5-4) luminosities of our sources are a factor of ∼1.7 fainter than expected, based on the local L′HCN(5-4) − LIR relation, but this offset corresponds to only ∼2σ if we consider sample variance. We find that both the HCO+/HCN and HNC/HCN flux ratios are compatible with unity. The first ratio is expected for photo-dominated regions (PDRs) while the second is consistent with PDRs or X-ray dominated regions (XDRs) and/or mid-infrared (IR) pumping of HNC. Our sources are at the high end of the local relation between the star formation efficiency, determined using the LIR/[CI] and LIR/CO ratios, and the dense-gas fraction, estimated using the HCN/[CI] and HCN/CO ratios. Finally, in SPT0125-47, which has the highest signal-to-noise ratio, we found that the velocity profiles of the lines tracing dense (HCN, HCO+) and lower-density (CO, [CI]) molecular gas are similar. In addition to these lines, we obtained one robust and one tentative detection of 13CO(4-3) and found an average I 12CO(4-3)/I13CO(4-3) flux ratio of 26.1−3.5+4.5, indicating a young but not pristine interstellar medium. We argue that the combination of large and slightly enriched gas reservoirs and high dense-gas fractions could explain the prodigious star formation in these systems.


2019 ◽  
Vol 621 ◽  
pp. A62 ◽  
Author(s):  
Yoko Okada ◽  
Rolf Güsten ◽  
Miguel Angel Requena-Torres ◽  
Markus Röllig ◽  
Jürgen Stutzki ◽  
...  

Aims. The aim of our study is to investigate the physical properties of the star-forming interstellar medium (ISM) in the Large Magellanic Cloud (LMC) by separating the origin of the emission lines spatially and spectrally. The LMC provides a unique local template to bridge studies in the Galaxy and high redshift galaxies because of its low metallicity and proximity, enabling us to study the detailed physics of the ISM in spatially resolved individual star-forming regions. Following Okada et al. (Okada, Y., Requena-Torres, M. A., Güsten, R., et al. 2015, A&A, 580, A54), we investigate different phases of the ISM traced by carbon-bearing species in four star-forming regions in the LMC, and model the physical properties using the KOSMA-τ PDR model. Methods. We mapped 3–13 arcmin2 areas in 30 Dor, N158, N160, and N159 along the molecular ridge of the LMC in [C II] 158 μm with GREAT on board SOFIA. We also observed the same area with CO(2-1) to (6-5), 13CO(2-1) and (3-2), [C I] 3P1–3P0 and 3P2–3P1 with APEX. For selected positions in N159 and 30 Dor, we observed [O I] 145 μm and [O I] 63 μm with upGREAT. All spectra are velocity resolved. Results. In all four star-forming regions, the line profiles of CO, 13CO, and [C I] emission are similar, being reproduced by a combination of Gaussian profiles defined by CO(3-2), whereas [C II] typically shows wider line profiles or an additional velocity component. At several positions in N159 and 30 Dor, we observed the velocity-resolved [O I] 145 and 63 μm lines for the first time. At some positions, the [O I] line profiles match those of CO, at other positions they are more similar to the [C II] profiles. We interpret the different line profiles of CO, [C II] and [O I] as contributions from spatially separated clouds and/or clouds in different physical phases, which give different line ratios depending on their physical properties. We modeled the emission from the CO, [C I], [C II], and [O I] lines and the far-infrared continuum emission using the latest KOSMA-τ PDR model, which treats the dust-related physics consistently and computes the dust continuum SED together with the line emission of the chemical species. We find that the line and continuum emissions are not well-reproduced by a single clump ensemble. Toward the CO peak at N159 W, we propose a scenario that the CO, [C II], and [O I] 63 μm emission are weaker than expected because of mutual shielding among clumps.


2020 ◽  
Vol 496 (3) ◽  
pp. 2821-2835 ◽  
Author(s):  
Tie Liu ◽  
Neal J Evans ◽  
Kee-Tae Kim ◽  
Paul F Goldsmith ◽  
Sheng-Yuan Liu ◽  
...  

ABSTRACT We report studies of the relationships between the total bolometric luminosity (Lbol or LTIR) and the molecular line luminosities of J = 1 − 0 transitions of H13CN, H13CO+, HCN, and HCO+ with data obtained from ACA observations in the ‘ATOMS’ survey of 146 active Galactic star-forming regions. The correlations between Lbol and molecular line luminosities $L^{\prime }_{\rm mol}$ of the four transitions all appear to be approximately linear. Line emission of isotopologues shows as large scatters in Lbol–$L^{\prime }_{\rm mol}$ relations as their main line emission. The log(Lbol/$L^{\prime }_{\rm mol}$) for different molecular line tracers have similar distributions. The Lbol-to-$L^{\prime }_{\rm mol}$ ratios do not change with galactocentric distances (RGC) and clump masses (Mclump). The molecular line luminosity ratios (HCN-to-HCO+, H13CN-to-H13CO+, HCN-to-H13CN, and HCO+-to-H13CO+) all appear constant against Lbol, dust temperature (Td), Mclump, and RGC. Our studies suggest that both the main lines and isotopologue lines are good tracers of the total masses of dense gas in Galactic molecular clumps. The large optical depths of main lines do not affect the interpretation of the slopes in star formation relations. We find that the mean star formation efficiency (SFE) of massive Galactic clumps in the ‘ATOMS’ survey is reasonably consistent with other measures of the SFE for dense gas, even those using very different tracers or examining very different spatial scales.


2019 ◽  
Vol 625 ◽  
pp. A65 ◽  
Author(s):  
F. Renaud ◽  
F. Bournaud ◽  
O. Agertz ◽  
K. Kraljic ◽  
E. Schinnerer ◽  
...  

The physical origin of enhanced star formation activity in interacting galaxies remains an open question. Knowing whether starbursts are triggered by an increase in the quantity of dense gas or an increase in the star formation efficiency therein would improve our understanding of galaxy evolution and make it possible to transfer the results obtained in the local Universe to high-redshift galaxies. In this paper, we analyze a parsec-resolution simulation of a model of interacting galaxies similar to the Antennae Galaxies. We find that the interplay of physical processes such as tides, shear, and turbulence shows complex and important variations in time and space, but that different combinations of these processes can produce similar signatures in observable quantities such as the depletion time and CO emission. Some clouds within the interacting galaxies exhibit an excess of dense gas (> 104 cm−3), while others only attain similarly high densities in the tail of their density distribution. The clouds with an excess of dense gas are found across all regions of the galaxies, but their number density varies between regions due to different cloud assembly mechanisms. This translates into variations in the scale dependence of quantities related to cloud properties and star formation. The super-linearity of the relationship between the star formation rate and gas density implies that the dense gas excess corresponds to a decrease in the depletion time, and thus leads to a deviation from the classical star formation regime that is visible up to galactic scales. We find that the αCO conversion factor between the CO luminosity and molecular gas mass exhibits stronger spatial than temporal variations in a system like the Antennae. Our results raise several caveats for the interpretation of observations of unresolved star-forming regions, but also predict that the diversity of environments for star formation will be better captured by the future generations of instruments.


2012 ◽  
Vol 8 (S292) ◽  
pp. 289-289 ◽  
Author(s):  
M. Pannella ◽  
D. Elbaz ◽  
E. Daddi

AbstractWe quantitatively explore in a unbiased way the evolution of dust attenuation up to z ≈ 4 as a function of galaxy properties. We have used one of the deepest datasets available at present, in the GOODS-N field, to select a star forming galaxy sample and robustly measure galaxy redshifts, star formation rates, stellar masses and UV restframe properties. Our main results can be summarized as follows: i) we confirm that galaxy stellar mass is a main driver of UV dust attenuation in star forming galaxies: more massive galaxies are more dust attenuated than less massive ones; ii) strikingly, we find that the correlation does not evolve with redshift: the amount of dust attenuation is the same at all cosmic epochs for a fixed stellar mass; iii) this finding explains why and how the SFR–AUV relation evolves with redshift: the same amount of star formation is less attenuated at higher redshift because it is hosted in less massive galaxies; iv) combining our finding with results from line emission surveys, we confirm that line reddening is larger than continuum reddening, at least up to z ≈ 1.5; v) given the redshift evolution of the mass-metallicity relation, we predict that star forming galaxies at a fixed metal content are more attenuated at high redshift. Finally, we explored the correlation between UV dust attenuation and the spectral slope: vi) the correlation is evolving with redshift with star forming galaxies at lower redshift having redder spectra than higher redshift ones for the same amount of dust attenuation.


2020 ◽  
Vol 639 ◽  
pp. L13
Author(s):  
N. P. H. Nesvadba ◽  
G. V. Bicknell ◽  
D. Mukherjee ◽  
A. Y. Wagner

We present new, spatially resolved [CI]1–0, [CI]2–1, CO(7–6), and dust continuum observations of 4C 41.17 at z = 3.8. This is one of the best-studied radio galaxies in this epoch and is arguably the best candidate of jet-triggered star formation at high redshift currently known in the literature. 4C 41.17 shows a narrow ridge of dust continuum extending over 15 kpc near the radio jet axis. Line emission is found within the galaxy in the region with signatures of positive feedback. Using the [CI]1–0 line as a molecular gas tracer, and multifrequency observations of the far-infrared dust heated by star formation, we find a total gas mass of 7.6 × 1010 M⊙, which is somewhat greater than that previously found from CO(4–3). The gas mass surface density of 103 M⊙ yr−1 pc−2 and the star formation rate surface density of 10 M⊙ yr−1 kpc−2 were derived over the 12 kpc × 8 kpc area, where signatures of positive feedback have previously been found. These densities are comparable to those in other populations of massive, dusty star-forming galaxies in this redshift range, suggesting that the jet does not currently enhance the efficiency with which stars form from the gas. This is consistent with expectations from simulations, whereby radio jets may facilitate the onset of star formation in galaxies without boosting its efficiency over longer timescales, in particular after the jet has broken out of the interstellar medium, as is the case in 4C 41.17.


2020 ◽  
Vol 7 (12) ◽  
pp. 200556
Author(s):  
J. A. Hodge ◽  
E. da Cunha

The Atacama Large Millimetre/submillimetre Array (ALMA) is currently in the process of transforming our view of star-forming galaxies in the distant ( z ≳ 1 ) universe. Before ALMA, most of what we knew about dust-obscured star formation in distant galaxies was limited to the brightest submillimetre sources—the so-called submillimetre galaxies (SMGs)—and even the information on those sources was sparse, with resolved (i.e. sub-galactic) observations of the obscured star formation and gas reservoirs typically restricted to the most extreme and/or strongly lensed sources. Starting with the beginning of early science operations in 2011, the last 9 years of ALMA observations have ushered in a new era for studies of high-redshift star formation. With its long baselines, ALMA has allowed observations of distant dust-obscured star formation with angular resolutions comparable to—or even far surpassing—the best current optical telescopes. With its bandwidth and frequency coverage, it has provided an unprecedented look at the associated molecular and atomic gas in these distant galaxies through targeted follow-up and serendipitous detections/blind line scans. Finally, with its leap in sensitivity compared to previous (sub-)millimetre arrays, it has enabled the detection of these powerful dust/gas tracers much further down the luminosity function through both statistical studies of colour/mass-selected galaxy populations and dedicated deep fields. We review the main advances ALMA has helped bring about in our understanding of the dust and gas properties of high-redshift ( z ≳ 1 ) star-forming galaxies during these first 9 years of its science operations, and we highlight the interesting questions that may be answered by ALMA in the years to come.


2009 ◽  
Vol 5 (S267) ◽  
pp. 46-51
Author(s):  
K. Menéndez-Delmestre ◽  
A. W. Blain ◽  
M. Swinbank ◽  
I. Smail ◽  
S. C. Chapman ◽  
...  

AbstractUltra-luminous infrared galaxies (LIR > 1012L⊙) are locally rare, but appear to dominate the co-moving energy density at higher redshifts (z > 2). Many of these are optically faint, dust-obscured galaxies that have been identified by the detection of their thermal dust emission in the sub-mm. Multi-wavelength spectroscopic follow-up observations of these sub-mm galaxies (SMGs) have shown that they are massive (Mstellar ~ 1011M⊙) objects undergoing intense star-formation (SFRs ~ 102–103M⊙ yr−1) with a mean redshift of z ~ 2, coinciding with the epoch of peak quasar activity. Furthermore, the presence of AGNs in ~ 28–50% of SMGs has been unveiled in the X-ray and near-IR. When both AGN and star-formation activity are present, long-slit spectroscopic techniques face difficulties in disentangling their independent contributions from integrated spectra. We have observed Hα emission from a sample of three SMGs in the redshift range z ~ 1.4–2.4 with the integral field spectrograph OSIRIS on Keck, in conjunction with Laser Guide Star Adaptive Optics. The spatially resolved, two-dimensional spectroscopic insight that these observations provide is the only viable probe of the spatial distribution and line-of-sight motion of ionized gas within these galaxies. We detect multiple galactic-scale sub-components, distinguishing the compact, broad Hα emission arising from an AGN from the more extended narrow-line emission of star-forming regions spreading over ~ 8–17 kpc. We explore the dynamics of gas in the inner galaxy halo to improve our understanding of the internal dynamics of this enigmatic galaxy population. We find no evidence of ordered orbital motion such as would be found in a gaseous disk, but rather large velocity offsets of a few hundred kilometers per second between distinct galactic-scale sub-components. Considering the disturbed morphology of SMGs, these sub-components are likely remnants of originally independent gas-rich galaxies that are in the process of merging, hence triggering the ultraluminous SMG phase.


2020 ◽  
Vol 499 (4) ◽  
pp. 5749-5764 ◽  
Author(s):  
Xihan Ji ◽  
Renbin Yan

ABSTRACT Optical diagnostic diagrams are powerful tools to separate different ionizing sources in galaxies. However, the model-constraining power of the most widely used diagrams is very limited and challenging to visualize. In addition, there have always been classification inconsistencies between diagrams based on different line ratios, and ambiguities between regions purely ionized by active galactic nuclei (AGNs) and composite regions. We present a simple reprojection of the 3D line ratio space composed of [N ii]λ6583/H α, [S ii]λλ6716, 6731/H α, and [O iii]λ5007/H β, which reveals its model-constraining power and removes the ambiguity for the true composite objects. It highlights the discrepancy between many theoretical models and the data loci. With this reprojection, we can put strong constraints on the photoionization models and the secondary nitrogen abundance prescription. We find that a single nitrogen prescription cannot fit both the star-forming locus and AGN locus simultaneously, with the latter requiring higher N/O ratios. The true composite regions stand separately from both models. We can compute the fractional AGN contributions for the composite regions, and define demarcations with specific upper limits on contamination from AGN or star formation. When the discrepancy about nitrogen prescriptions gets resolved in the future, it would also be possible to make robust metallicity measurements for composite regions and AGNs.


Author(s):  
N. R. Tanvir ◽  
E. Le Floc’h ◽  
L. Christensen ◽  
J. Caruana ◽  
R. Salvaterra ◽  
...  

AbstractAt peak, long-duration gamma-ray bursts are the most luminous sources of electromagnetic radiation known. Since their progenitors are massive stars, they provide a tracer of star formation and star-forming galaxies over the whole of cosmic history. Their bright power-law afterglows provide ideal backlights for absorption studies of the interstellar and intergalactic medium back to the reionization era. The proposed THESEUS mission is designed to detect large samples of GRBs at z > 6 in the 2030s, at a time when supporting observations with major next generation facilities will be possible, thus enabling a range of transformative science. THESEUS will allow us to explore the faint end of the luminosity function of galaxies and the star formation rate density to high redshifts; constrain the progress of re-ionisation beyond $z\gtrsim 6$ z ≳ 6 ; study in detail early chemical enrichment from stellar explosions, including signatures of Population III stars; and potentially characterize the dark energy equation of state at the highest redshifts.


Sign in / Sign up

Export Citation Format

Share Document