scholarly journals High-redshift star formation in the Atacama large millimetre/submillimetre array era

2020 ◽  
Vol 7 (12) ◽  
pp. 200556
Author(s):  
J. A. Hodge ◽  
E. da Cunha

The Atacama Large Millimetre/submillimetre Array (ALMA) is currently in the process of transforming our view of star-forming galaxies in the distant ( z ≳ 1 ) universe. Before ALMA, most of what we knew about dust-obscured star formation in distant galaxies was limited to the brightest submillimetre sources—the so-called submillimetre galaxies (SMGs)—and even the information on those sources was sparse, with resolved (i.e. sub-galactic) observations of the obscured star formation and gas reservoirs typically restricted to the most extreme and/or strongly lensed sources. Starting with the beginning of early science operations in 2011, the last 9 years of ALMA observations have ushered in a new era for studies of high-redshift star formation. With its long baselines, ALMA has allowed observations of distant dust-obscured star formation with angular resolutions comparable to—or even far surpassing—the best current optical telescopes. With its bandwidth and frequency coverage, it has provided an unprecedented look at the associated molecular and atomic gas in these distant galaxies through targeted follow-up and serendipitous detections/blind line scans. Finally, with its leap in sensitivity compared to previous (sub-)millimetre arrays, it has enabled the detection of these powerful dust/gas tracers much further down the luminosity function through both statistical studies of colour/mass-selected galaxy populations and dedicated deep fields. We review the main advances ALMA has helped bring about in our understanding of the dust and gas properties of high-redshift ( z ≳ 1 ) star-forming galaxies during these first 9 years of its science operations, and we highlight the interesting questions that may be answered by ALMA in the years to come.

2018 ◽  
Vol 612 ◽  
pp. A94 ◽  
Author(s):  
K. Nakajima ◽  
D. Schaerer ◽  
O. Le Fèvre ◽  
R. Amorín ◽  
M. Talia ◽  
...  

Context. Ultraviolet (UV) emission-line spectra are used to spectroscopically confirm high-z galaxies and increasingly also to determine their physical properties. Aims. We construct photoionization models to interpret the observed UV spectra of distant galaxies in terms of the dominant radiation field and the physical condition of the interstellar medium (ISM). These models are applied to new spectroscopic observations from the VIMOS Ultra Deep Survey (VUDS). Methods. We construct a large grid of photoionization models, which use several incident radiation fields (stellar populations, active galactic nuclei (AGNs), mix of stars and AGNs, blackbodies, and others), and cover a wide range of metallicities and ionization parameters. From these models we derive new spectral UV line diagnostics using equivalent widths (EWs) of [CIII]λ1909 doublet, CIVλ1549 doublet and the line ratios of [CIII], CIV, and He IIλ1640 recombination lines. We apply these diagnostics to a sample of 450 [CIII]-emitting galaxies at redshifts z = 2–4 previously identified in VUDS. Results. We demonstrate that our photoionization models successfully reproduce observations of nearby and high-redshift sources with known radiation field and/or metallicity. For star-forming galaxies our models predict that [CIII] EW peaks at sub-solar metallicities, whereas CIV EW peaks at even lower metallicity. Using the UV diagnostics, we show that the average star-forming galaxy (EW([CIII]) ~ 2 Å) based on the composite of the 450 UV-selected galaxies’ spectra The inferred metallicity and ionization parameter is typically Z = 0.3–0.5 Z⊙ and logU = −2.7 to − 3, in agreement with earlier works at similar redshifts. The models also indicate an average age of 50–200 Myr since the beginning of the current star-formation, and an ionizing photon production rate, ξion, of logξion/erg−1 Hz = 25.3–25.4. Among the sources with EW([CIII]) >= 10 Å, approximately 30% are likely dominated by AGNs. The metallicity derived for galaxies with EW(CIII) = 10–20 Å is low, Z = 0.02–0.2 Z⊙, and the ionization parameter higher (logU ~−1.7) than the average star-forming galaxy. To explain the average UV observations of the strongest but rarest [CIII] emitters (EW([CIII]) > 20 Å), we find that stellar photoionization is clearly insufficient. A radiation field consisting of a mix of a young stellar population (logξion/erg−1 Hz ~ 25.7) plus an AGN component is required. Furthermore an enhanced C/O abundance ratio (up to the solar value) is needed for metallicities Z = 0.1–0.2 Z⊙ and logU = −1.7 to − 1.5. Conclusions. A large grid of photoionization models has allowed us to propose new diagnostic diagrams to classify the nature of the ionizing radiation field (star formation or AGN) of distant galaxies using UV emission lines, and to constrain their ISM properties. We have applied this grid to a sample of [CIII]-emitting galaxies at z = 2–4 detected in VUDS, finding a range of physical properties and clear evidence for significant AGN contribution in rare sources with very strong [CIII] emission. The UV diagnostics we propose should also serve as an important basis for the interpretation of upcoming observations of high-redshift galaxies.


2018 ◽  
Vol 620 ◽  
pp. A115 ◽  
Author(s):  
M. Béthermin ◽  
T. R. Greve ◽  
C. De Breuck ◽  
J. D. Vieira ◽  
M. Aravena ◽  
...  

The origin of the high star formation rates (SFR) observed in high-redshift dusty star-forming galaxies is still unknown. Large fractions of dense molecular gas might provide part of the explanation, but there are few observational constraints on the amount of dense gas in high-redshift systems dominated by star formation. In this paper, we present the results of our Atacama large millimeter array (ALMA) program targeting dense-gas tracers (HCN(5-4), HCO+(5-4), and HNC(5-4)) in five strongly lensed galaxies from the South Pole Telescope (SPT) submillimeter galaxy sample. We detected two of these lines (S/N > 5) in SPT-125-47 at z = 2.51 and tentatively detected all three (S/N ∼ 3) in SPT0551-50 at z = 3.16. Since a significant fraction of our target lines is not detected, we developed a statistical method to derive unbiased mean properties of our sample taking into account both detections and non-detections. On average, the HCN(5-4) and HCO+(5-4) luminosities of our sources are a factor of ∼1.7 fainter than expected, based on the local L′HCN(5-4) − LIR relation, but this offset corresponds to only ∼2σ if we consider sample variance. We find that both the HCO+/HCN and HNC/HCN flux ratios are compatible with unity. The first ratio is expected for photo-dominated regions (PDRs) while the second is consistent with PDRs or X-ray dominated regions (XDRs) and/or mid-infrared (IR) pumping of HNC. Our sources are at the high end of the local relation between the star formation efficiency, determined using the LIR/[CI] and LIR/CO ratios, and the dense-gas fraction, estimated using the HCN/[CI] and HCN/CO ratios. Finally, in SPT0125-47, which has the highest signal-to-noise ratio, we found that the velocity profiles of the lines tracing dense (HCN, HCO+) and lower-density (CO, [CI]) molecular gas are similar. In addition to these lines, we obtained one robust and one tentative detection of 13CO(4-3) and found an average I 12CO(4-3)/I13CO(4-3) flux ratio of 26.1−3.5+4.5, indicating a young but not pristine interstellar medium. We argue that the combination of large and slightly enriched gas reservoirs and high dense-gas fractions could explain the prodigious star formation in these systems.


2021 ◽  
Vol 645 ◽  
pp. A45
Author(s):  
R. Cañameras ◽  
N. P. H. Nesvadba ◽  
R. Kneissl ◽  
S. König ◽  
C. Yang ◽  
...  

We present ALMA, NOEMA, and IRAM-30 m/EMIR observations of the high-density tracer molecules HCN, HCO+, and HNC in three of the brightest lensed dusty star-forming galaxies at z ≃ 3–3.5, part of the Planck’s Dusty Gravitationally Enhanced subMillimetre Sources (GEMS), with the aim of probing the gas reservoirs closely associated with their exceptional levels of star formation. We obtained robust detections of ten emission lines between Jup = 4 and 6, as well as several additional upper flux limits. In PLCK_G244.8+54.9, the brightest source at z = 3.0, the HNC(5–4) line emission at 0.1″ resolution, together with other spatially-integrated line profiles, suggests comparable distributions of dense and more diffuse gas reservoirs, at least over the most strongly magnified regions. This rules out any major effect from differential lensing. This line is blended with CN(4–3) and in this source, we measure a HNC(5–4)/CN(4–3) flux ratio of 1.76 ±0. 86. Dense-gas line profiles generally match those of mid-J CO lines, except in PLCK_G145.2+50.8, which also has dense-gas line fluxes that are relatively lower, perhaps due to fewer dense cores and more segregated dense and diffuse gas phases in this source. The HCO+/HCN ≳ 1 and HNC/HCN ∼ 1 line ratios in our sample are similar to those of nearby ultraluminous infrared galaxies (ULIRGs) and consistent with photon-dominated regions without any indication of important mechanical heating or active galactic nuclei feedback. We characterize the dense-gas excitation in PLCK_G244.8+54.9 using radiative transfer models assuming pure collisional excitation and find that mid-J HCN, HCO+, and HNC lines arise from a high-density phase with an H2 density of n  ∼  105–106 cm−3, although important degeneracies hinder a determination of the exact conditions. The three GEMS are consistent with extrapolations of dense-gas star-formation laws derived in the nearby Universe, adding further evidence that the extreme star-formation rates observed in the most active galaxies at z ∼ 3 are a consequence of their important dense-gas contents. The dense-gas-mass fractions traced by HCN/[CI] and HCO+/[CI] line ratios are elevated, but not exceptional as compared to other lensed dusty star-forming galaxies at z >  2, and they fall near the upper envelope of local ULIRGs. Despite the higher overall gas fractions and local gas-mass surface densities observed at high redshift, the dense-gas budget of rapidly star-forming galaxies seems to have evolved little between z ∼ 3 and z ∼ 0. Our results favor constant dense-gas depletion times in these populations, which is in agreement with theoretical models of star formation.


2019 ◽  
Vol 15 (S352) ◽  
pp. 280-280
Author(s):  
Elisa Ritondale

AbstractLyman-alpha emitting (LAE) galaxies are thought to be predominantly responsible for the re-ionisation of the Universe and are, as such, one of the most studied star-forming galaxy populations. Current optical and narrow-band studies are limited by the angular resolution of the observations and the considerable investment in telescope time. Strong gravitational lensing is an extremely powerful method that can be used to overcome these limitations. In my talk I will present a study on the first homogeneous sample of 17 lensed Lyman-alpha emitters at redshift 2 < z < 3. By taking advantage of the lensing magnification, I was able to access the detailed structure of this high redshift star-forming galaxies, finding that they have radii ranging from 0.2 to 1.8 kpc and have a complex and clumpy morphology, with a median ellipticity of 0.49. This is consistent with disk-like structures of star-formation, which would rule out models where the Lyman-alpha emission is only seen perpendicular to the disk, and favours those clumpy models for the escape lines of sight for Lyman-alpha photons. We also find that the star formation rates range from 0.3 to 8.5 Mȯ/yr and that these galaxies tend to be very compact. The lower limit to their intrinsic size is about a factor of two smaller than that found for non-lensed LAEs, which highlights the power of gravitational lensing and sophisticated lens modelling techniques for resolving such objects in the high redshift Universe.


Author(s):  
N. R. Tanvir ◽  
E. Le Floc’h ◽  
L. Christensen ◽  
J. Caruana ◽  
R. Salvaterra ◽  
...  

AbstractAt peak, long-duration gamma-ray bursts are the most luminous sources of electromagnetic radiation known. Since their progenitors are massive stars, they provide a tracer of star formation and star-forming galaxies over the whole of cosmic history. Their bright power-law afterglows provide ideal backlights for absorption studies of the interstellar and intergalactic medium back to the reionization era. The proposed THESEUS mission is designed to detect large samples of GRBs at z > 6 in the 2030s, at a time when supporting observations with major next generation facilities will be possible, thus enabling a range of transformative science. THESEUS will allow us to explore the faint end of the luminosity function of galaxies and the star formation rate density to high redshifts; constrain the progress of re-ionisation beyond $z\gtrsim 6$ z ≳ 6 ; study in detail early chemical enrichment from stellar explosions, including signatures of Population III stars; and potentially characterize the dark energy equation of state at the highest redshifts.


2018 ◽  
Vol 620 ◽  
pp. A60 ◽  
Author(s):  
R. Cañameras ◽  
N. P. H. Nesvadba ◽  
M. Limousin ◽  
H. Dole ◽  
R. Kneissl ◽  
...  

We report the discovery of a molecular wind signature from a massive intensely star-forming clump of a few 109 M⊙, in the strongly gravitationally lensed submillimeter galaxy “the Emerald” (PLCK_G165.7+49.0) at z = 2.236. The Emerald is amongst the brightest high-redshift galaxies on the submillimeter sky, and was initially discovered with the Planck satellite. The system contains two magnificient structures with projected lengths of 28.5″ and 21″ formed by multiple, near-infrared arcs, falling behind a massive galaxy cluster at z = 0.35, as well as an adjacent filament that has so far escaped discovery in other wavebands. We used HST/WFC3 and CFHT optical and near-infrared imaging together with IRAM and SMA interferometry of the CO(4–3) line and 850 μm dust emission to characterize the foreground lensing mass distribution, construct a lens model with LENSTOOL, and calculate gravitational magnification factors between 20 and 50 in most of the source. The majority of the star formation takes place within two massive star-forming clumps which are marginally gravitationally bound and embedded in a 9 × 1010 M⊙, fragmented disk with 20% gas fraction. The stellar continuum morphology is much smoother and also well resolved perpendicular to the magnification axis. One of the clumps shows a pronounced blue wing in the CO(4–3) line profile, which we interpret as a wind signature. The mass outflow rates are high enough for us to suspect that the clump might become unbound within a few tens of Myr, unless the outflowing gas can be replenished by gas accretion from the surrounding disk. The velocity offset of –200 km s−1 is above the escape velocity of the clump, but not that of the galaxy overall, suggesting that much of this material might ultimately rain back onto the galaxy and contribute to fueling subsequent star formation.


2020 ◽  
Vol 644 ◽  
pp. A144
Author(s):  
D. Donevski ◽  
A. Lapi ◽  
K. Małek ◽  
D. Liu ◽  
C. Gómez-Guijarro ◽  
...  

The dust-to-stellar mass ratio (Mdust/M⋆) is a crucial, albeit poorly constrained, parameter for improving our understanding of the complex physical processes involved in the production of dust, metals, and stars in galaxy evolution. In this work, we explore trends of Mdust/M⋆ with different physical parameters and using observations of 300 massive dusty star-forming galaxies detected with ALMA up to z ≈ 5. Additionally, we interpret our findings with different models of dusty galaxy formation. We find that Mdust/M⋆ evolves with redshift, stellar mass, specific star formation rates, and integrated dust size, but that evolution is different for main-sequence galaxies than it is for starburst galaxies. In both galaxy populations, Mdust/M⋆ increases until z ∼ 2, followed by a roughly flat trend towards higher redshifts, suggesting efficient dust growth in the distant universe. We confirm that the inverse relation between Mdust/M⋆ and M⋆ holds up to z ≈ 5 and can be interpreted as an evolutionary transition from early to late starburst phases. We demonstrate that the Mdust/M⋆ in starbursts reflects the increase in molecular gas fraction with redshift and attains the highest values for sources with the most compact dusty star formation. State-of-the-art cosmological simulations that include self-consistent dust growth have the capacity to broadly reproduce the evolution of Mdust/M⋆ in main-sequence galaxies, but underestimating it in starbursts. The latter is found to be linked to lower gas-phase metallicities and longer dust-growth timescales relative to observations. The results of phenomenological models based on the main-sequence and starburst dichotomy as well as analytical models that include recipes for rapid metal enrichment are consistent with our observations. Therefore, our results strongly suggest that high Mdust/M⋆ is due to rapid dust grain growth in the metal-enriched interstellar medium. This work highlights the multi-fold benefits of using Mdust/M⋆ as a diagnostic tool for: (1) disentangling main-sequence and starburst galaxies up to z ∼ 5; (2) probing the evolutionary phase of massive objects; and (3) refining the treatment of the dust life cycle in simulations.


2020 ◽  
Vol 494 (2) ◽  
pp. 2355-2373 ◽  
Author(s):  
M Palla ◽  
F Calura ◽  
F Matteucci ◽  
X L Fan ◽  
F Vincenzo ◽  
...  

ABSTRACT We study the effects of the integrated galactic initial mass function (IGIMF) and dust evolution on the abundance patterns of high redshift starburst galaxies. In our chemical models, the rapid collapse of gas clouds triggers an intense and rapid star formation episode, which lasts until the onset of a galactic wind, powered by the thermal energy injected by stellar winds and supernova explosions. Our models follow the evolution of several chemical elements (C, N, α-elements, and Fe) both in the gas and dust phases. We test different values of β, the slope of the embedded cluster mass function for the IGIMF, where lower β values imply a more top-heavy initial mass function (IMF). The computed abundances are compared to high-quality abundance measurements obtained in lensed galaxies and from composite spectra in large samples of star-forming galaxies in the redshift range 2 ≲ z ≲ 3. The adoption of the IGIMF causes a sensible increase of the rate of star formation with respect to a standard Salpeter IMF, with a strong impact on chemical evolution. We find that in order to reproduce the observed abundance patterns in these galaxies, either we need a very top-heavy IGIMF (β &lt; 2) or large amounts of dust. In particular, if dust is important, the IGIMF should have β ≥ 2, which means an IMF slightly more top-heavy than the Salpeter one. The evolution of the dust mass with time for galaxies of different mass and IMF is also computed, highlighting that the dust amount increases with a top-heavier IGIMF.


2020 ◽  
Vol 58 (1) ◽  
pp. 617-659
Author(s):  
Masami Ouchi ◽  
Yoshiaki Ono ◽  
Takatoshi Shibuya

Hydrogen Lyman-α (Lyα) emission has been one of the major observational probes for the high-redshift Universe since the first discoveries of high- z Lyα-emitting galaxies in the late 1990s. Due to the strong Lyα emission originated by resonant scattering and recombination of the most abundant element, Lyα observations witness not only Hii regions of star formation and active galactic nuclei (AGNs) but also diffuse Hi gas in the circumgalactic medium (CGM) and the intergalactic medium (IGM). Here, we review Lyα sources and present theoretical interpretations reached to date. We conclude the following: ▪  A typical Lyα emitter (LAE) at z ≳ 2 with a L* Lyα luminosity is a high- z counterpart of a local dwarf galaxy, a compact metal-poor star-forming galaxy (SFG) with an approximate stellar (dark matter halo) mass and star-formation rate of 108−9M⊙ (1010−11M⊙) and 1–10 M⊙ year−1, respectively. ▪  High- z SFGs ubiquitously have a diffuse Lyα-emitting halo in the CGM extending to the halo virial radius and beyond. ▪  Remaining neutral hydrogen at the epoch of cosmic reionization makes a strong dimming of Lyα emission for galaxies at z > 6 that suggests the late reionization history. The next-generation large-telescope projects will combine Lyα emission data with Hi Lyα absorptions and 21-cm radio data that map out the majority of hydrogen (Hi+Hii) gas, uncovering the exchanges of ( a) matter by outflow and inflow and ( b) radiation, relevant to cosmic reionization, between galaxies and the CGM/IGM.


2020 ◽  
Vol 493 (2) ◽  
pp. 1982-1995 ◽  
Author(s):  
Steven Janowiecki ◽  
Barbara Catinella ◽  
Luca Cortese ◽  
Amelie Saintonge ◽  
Jing Wang

ABSTRACT We use H i and H2 global gas measurements of galaxies from xGASS and xCOLD GASS to investigate quenching paths of galaxies below the Star forming main sequence (SFMS). We show that the population of galaxies below the SFMS is not a 1:1 match with the population of galaxies below the H i and H2 gas fraction scaling relations. Some galaxies in the transition zone (TZ) 1σ below the SFMS can be as H i-rich as those in the SFMS, and have on average longer gas depletion time-scales. We find evidence for environmental quenching of satellites, but central galaxies in the TZ defy simple quenching pathways. Some of these so-called ‘quenched’ galaxies may still have significant gas reservoirs and be unlikely to deplete them any time soon. As such, a correct model of galaxy quenching cannot be inferred with star formation rate (or other optical observables) alone, but must include observations of the cold gas. We also find that internal structure (particularly, the spatial distribution of old and young stellar populations) plays a significant role in regulating the star formation of gas-rich isolated TZ galaxies, suggesting the importance of bulges in their evolution.


Sign in / Sign up

Export Citation Format

Share Document