scholarly journals Estimated potential for energy savings in heating residential buildings in Poland

2018 ◽  
Vol 49 ◽  
pp. 00068 ◽  
Author(s):  
Piotr Lis

In the face of a constant increase in demand for energy, one of the important sources will be its saving and efficient use. The search for the greatest opportunities in this area should focus on the areas where the highest energy consumption occurs. The dominant role here is played by the communal and living sector, to the extent that it is the sub-sector of buildings with a majority share of residential buildings. The article presents the expected energy effects of measures reducing energy consumption for heating residential buildings in the whole country. The author used statistical data of the Central Statistical Office available in the database of this institution. These data were identified and searched for as suitable for the purposes of this article and were used as a basis for calculations and analyses. The calculations show that only thanks to simple actions such as improvement of thermal insulation of envelope components it is possible to reduce energy consumption for heating of residential buildings by over 70% in relation to the situation in 2011. The potential energy effect will also translate into an economic and environmental effect. Qualitative measures such as improving the performance of the heating and ventilation system of a building and/or changing the energy carrier will also reduce energy consumption for this purpose, but they are not the subject of this study.

Author(s):  
Jerzy Sowa ◽  
Maciej Mijakowski

A humidity-sensitive demand-controlled ventilation system is known for many years. It has been developed and commonly applied in regions with an oceanic climate. Some attempts were made to introduce this solution in Poland in a much severe continental climate. The article evaluates this system's performance and energy consumption applied in an 8-floor multi-unit residential building, virtual reference building described by the National Energy Conservation Agency NAPE, Poland. The simulations using the computer program CONTAM were performed for the whole hating season for Warsaw's climate. Besides passive stack ventilation that worked as a reference, two versions of humidity-sensitive demand-controlled ventilation were checked. The difference between them lies in applying the additional roof fans that convert the system to hybrid. The study confirmed that the application of demand-controlled ventilation in multi-unit residential buildings in a continental climate with warm summer (Dfb) leads to significant energy savings. However, the efforts to ensure acceptable indoor air quality require hybrid ventilation, which reduces the energy benefits. It is especially visible when primary energy use is analyzed.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Salah M Alabani ◽  
Ibrahim H Tawil

The residential sector in Libya has grown over the past decade in the construction of residential buildings due to the increase in the population. Moreover, the increase in the level of income has contributed to the increase in the purchase of household appliances, which leads to increased demand for energy. Energy consumption in the household sector accounted for 31% of total energy consumption during 2010, and the share of air conditioners in this sector consumed 18.35%. To reduce energy consumption and improve energy efficiency in this sector, policies should be considered to apply energy efficiency standards and markers to household electrical appliances, as they are considered one of the most successful programs used in the world. Countries are implementing such programs to reduce energy consumption in the domestic sector. This paper presents the possibility of implementing such programs to introduce the importance of energy efficiency standards and labeling programs for home appliances in Libya. The calculations required to design such programs show the energy savings that can be achieved during cooling loads in the summer period of 4 months July, August, September). A strategic plan has been developed during 10-year (2020-2030) to estimate the expected savings of energy consumed and to identify possible obstacles and difficulties by gradually increasing the energy efficiency ratio for comestic air conditioners in two stages, from EER10 to EER11 in the first stage is then raised to EER12 as the second stage.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3876
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Aiman Albatayneh ◽  
Patrick Dutournie ◽  
...  

Since buildings are one of the major contributors to global warming, efforts should be intensified to make them more energy-efficient, particularly existing buildings. This research intends to analyze the energy savings from a suggested retrofitting program using energy simulation for typical existing residential buildings. For the assessment of the energy retrofitting program using computer simulation, the most commonly utilized residential building types were selected. The energy consumption of those selected residential buildings was assessed, and a baseline for evaluating energy retrofitting was established. Three levels of retrofitting programs were implemented. These levels were ordered by cost, with the first level being the least costly and the third level is the most expensive. The simulation models were created for two different types of buildings in three different climatic zones in Palestine. The findings suggest that water heating, space heating, space cooling, and electric lighting are the highest energy consumers in ordinary houses. Level one measures resulted in a 19–24 percent decrease in energy consumption due to reduced heating and cooling loads. The use of a combination of levels one and two resulted in a decrease of energy consumption for heating, cooling, and lighting by 50–57%. The use of the three levels resulted in a decrease of 71–80% in total energy usage for heating, cooling, lighting, water heating, and air conditioning.


2021 ◽  
Vol 261 ◽  
pp. 03039
Author(s):  
Jiawen Zhang

In recent years, the construction industry has developed rapidly, and there are more and more urban construction projects. The corresponding design requirements for HVAC systems are also getting higher and higher. HVAC has been widely used in all kinds of buildings. While providing convenience for people, environmental pollution has gradually become a topic of concern for people. Therefore, when designing the HVAC system, HVAC not only meets the needs of customers, but also uses green energy saving technology to reduce energy consumption as far as possible. Reduce environmental pollution, so that the HVAC ventilation system of tall buildings can be in a stable and efficient operation state. Improve the operation effect of air conditioning, while reducing energy consumption.


2020 ◽  
Vol 10 (12) ◽  
pp. 4336
Author(s):  
Yue Hu ◽  
Per Kvols Heiselberg ◽  
Tine Steen Larsen

A ventilated window system enhanced by phase change material (PCM) has been developed, and its energy-saving potential examined in previous works. In this paper, the ventilation control strategies are further developed, to improve the energy-saving potential of the PCM energy storage. The influence of ventilation airflow rate on the energy-saving potential of the PCM storage is firstly studied based on an EnergyPlus model of a sustainable low energy house located in New York. It shows that in summer, the optimized ventilation airflow rate is 300 m3/h. The energy-saving of utilizing a ventilated window with PCM energy storage is 10.1% compared to using a stand-alone ventilated window, and 12.0% compared to using a standard window. In winter, the optimized ventilation airflow rate is 102 m3/h. The energy-saving of utilizing a ventilated window with PCM energy storage is 26.6% compared to using a stand-alone ventilated window, and 32.8% compared to using a standard window. Based on the optimized ventilation airflow rate, a demand control ventilation strategy, which personalizes the air supply and heat pump setting based on the demand of each room, is proposed and its energy-saving potential examined. The results show that the energy savings of using demand control compared to a constant ventilation airflow rate in the house is 14.7% in summer and 30.4% in winter.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2166 ◽  
Author(s):  
Aniela Kaminska ◽  
Andrzej Ożadowicz

Energy used for lighting is one of the major components of total energy consumption in buildings. Nowadays, buildings have a great potential to reduce their energy consumption, but to achieve this purpose additional efforts are indispensable. In this study, the need for energy savings evaluation before the implementation of lighting control algorithms for a specified building is highlighted. Therefore, experimental tests have been carried out in a university building with laboratories and other rooms, equipped with KNX building automation system. A dimmable control strategy has been investigated, dependent on daylight illuminance. Moreover, a relationship between external and internal daylight illuminance levels has been evaluated as well. Based on the experimental results, the authors proposed a method for the rough estimation of electrical energy savings. Since, according to the EN 15232 standard, Building Automation and Control Systems (BACS) play an important role in buildings’ energy efficiency improvements, the BACS efficiency factors from this standard have been used to verify the experimental results presented in the paper. The potential to reduce energy consumption from lighting in non-residential buildings by 28% for offices and 24% for educational buildings has been confirmed, but its dependence on specific building parameters has been discussed as well.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jingxin Gao ◽  
Xiaoyang Zhong ◽  
Weiguang Cai ◽  
Hong Ren ◽  
Tengfei Huo ◽  
...  

Abstract Urban residential buildings make large contributions to energy consumption. Energy consumption per square meter is most widely used to measure energy efficiency in urban residential buildings. This study aims to explore whether it is an appropriate indicator. An extended STIRPAT model was used based on the survey data from 867 households. Here we present that building area per household has a dilution effect on energy consumption per square meter. Neglecting this dilution effect leads to a significant overestimation of the effectiveness of building energy savings standards. Further analysis suggests that the peak of energy consumption per square meter in China’s urban residential buildings occurred in 2012 when accounting for the dilution effect, which is 11 years later than it would have occurred without considering the dilution effect. Overall, overlooking the dilution effect may lead to misleading judgments of crucial energy-saving policy tools, as well as the ongoing trend of residential energy consumption in China.


2012 ◽  
Vol 598 ◽  
pp. 49-52
Author(s):  
Hong Tao Zhou

Measure the temperature of exterior window and surrounding walls’ inner surface, and measure interior air temperature to analyze the effect, which was brought to building energy consumption and interior thermal conditions by the exterior window of the building; studied several details of exterior window design, and proposes a method, which is separately controlling the heat-transfer coefficient according to different orientation, room’s positions and room’s functions while designing the exterior windows, in order to improve the interior thermal conditions and reduce energy consumption of the residential buildings.


2019 ◽  
Vol 14 (3) ◽  
pp. 23-46
Author(s):  
Frida Bazzocchi ◽  
Sara Ticci ◽  
Vincenzo Di Naso ◽  
Andrea Rocchetti

In Italy, a large stock of public housing was built during the 1970s and 1980s with industrialized/prefabricated techniques. These buildings have envelopes characterized by the presence of many thermal bridges and low transmittance values. In addition, they feature inefficient single heating systems in residential units and no cooling/ventilation systems. As a result, these buildings require urgent energy retrofitting actions, and it is therefore necessary to define procedures that will guarantee effective results. The possible interventions must be compatible with building construction techniques as well as be minimally invasive and inexpensive. There are only a limited number of technical solutions, considering that residents should not have to move out during the renovations. In most Italian climatic zones, current interventions are usually linked to external insulation and window replacement, leading to an improvement in energy performance and comfort only during winter. Internal comfort conditions tend to worsen in summer months because seasonal temperatures tend to increase by a few degrees. Therefore, solutions should be proposed that will improve both summer and winter conditions. This work proposes an energy recovery procedure applied to a representative building from the abovementioned period located in the Florence area and constructed with an industrialized system named the “tunnel system” (great panels structure). The procedure used in this study provides for the redevelopment of the envelope and the application of a simple mechanical ventilation system to achieve substantial energy savings and improved indoor comfort conditions.


Sign in / Sign up

Export Citation Format

Share Document