scholarly journals Evaluation of SRE Scenarios for Penang, Selangor and Johor in Peninsular Malaysia using PRECIS Regional Climate Model (RCM)

2018 ◽  
Vol 65 ◽  
pp. 05020
Author(s):  
Kah Seng Chin ◽  
Kok Weng Tan

Climate change is unambiguous as there is much evidence from around the world showing that changes have already occurred. This phenomenon is in response to an array of human activities, notably the release of greenhouse gases; an understanding of the rate, mode and scale of this change is now of literally vital importance to society. Researchers utilize climate models to study the dynamics of our changing climate and also to make future projections. Climate models are basic representation of many interactions within the Earth’s climate which includes the atmosphere, land surface, oceans and ice. These models are typically quantitative in nature and range from simple depictions of the climate to very complex ones. In this present study, downscaled PRECIS regional climate models (RCMs) were used to project the average minimum and average maximum temperatures and average precipitation for Penang, Selangor and Johor in Peninsular Malaysia. The RCM projections for these three states were developed based on ECHAM4 A2 and ECHAM5 A1B scenarios for the years 1980 to 2069 and ECHAM4 B2 scenario for the years 2010 to 2069. Bias correction will be applied to the simulated historical data to remove common systematic model errors. Historical observation data of monthly average minimum and maximum temperatures and monthly average rainfall from the Malaysian Meteorological Department (MMD) will be used in the bias correction. Finally, a RCM scenario which matches with the historical observation data of the three states for future projections will be recommended.

2021 ◽  
Vol 945 (1) ◽  
pp. 012022
Author(s):  
Chin Kah Seng ◽  
Tan Kok Weng ◽  
Akihiko Nakayama

Abstract Climate change is one of the challenging global issues that our world is facing and it is intensely debated on the international agenda. It is a fact that climate change has brought about many disastrous events on a global scale which affect our livelihoods. Climate models are commonly used by researchers to study the magnitude of the changing climate and to simulate future climate projections. Most climate models are developed based on various interactions among the Earth’s climate components such as the land surface, oceans, atmosphere and sea-ice. In this study, the second-generation Canadian Earth System Model (CanESM2) was statistically downscaled to develop a regional climate model (RCM) based on three representative concentration pathways (RCPs): RCP2.6, RCP4.5 and RCP8.5. The RCM will be used to simulate the average minimum and maximum temperatures and average precipitation for Ipoh, Subang and KLIA Sepang in Peninsular Malaysia for the years 2006 to 2100. The simulated data were bias corrected using the historical observation data of monthly average minimum and maximum temperatures and monthly average rainfall retrieved from the Malaysian Meteorological Department (MMD). The different trends of the simulated data for all the three locations based on the RCP2.6, RCP4.5 and RCP8.5 were evaluated for future climate projection.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 381
Author(s):  
Wido Hanggoro ◽  
Jing Yuanshu ◽  
Leila Cudemus ◽  
Jing Zhihao

Regional climate models (RCMs) provide an improved representation of climate information as compared to global climate models (GCMs). However, in climate-agricultural impact studies, accurate and interdependent local-scale climate variables are preferable, but both RCMs and GCMs are still subjected to bias. This study compares univariate bias correction (UBC) and multivariate bias correction (MBC) method to simulate rice irrigation water needs (IWNs) in Jiangxi Province, China. This research uses the daily output of Hadley Centre Global Environmental Model version 3 regional climate model (HadGEM3-RA) forced with ERAINT (ECMWF ERA Interim) data and 13 Jiangxi ground-based observations, and the observation data are reference data with 1989–2005 defined as a calibration period and 2006–2007 as a validation period. The result shows that UBC and MBC methods favorably bias-corrected all climate variables during the calibration period, but still no significant difference is noted between the two methods. However, the UBC ignores the relationship between climate variables, while MBC preserves the climate variables’ interdependence which affect subsequent analyses. In rice IWNs simulation analysis, MBC has better skill at correcting bias compare to UBC in ETo (evapotranspiration) and Peff (effective rainfall) components. Nonetheless, both methods have a low ability to correct extreme values bias. Overall, both techniques successfully reduce bias, even though they are still less effective for precipitation compared to maximum and minimum temperature, relative humidity and windspeed.


Author(s):  
Weijia Qian ◽  
Howard H. Chang

Health impact assessments of future environmental exposures are routinely conducted to quantify population burdens associated with the changing climate. It is well-recognized that simulations from climate models need to be bias-corrected against observations to estimate future exposures. Quantile mapping (QM) is a technique that has gained popularity in climate science because of its focus on bias-correcting the entire exposure distribution. Even though improved bias-correction at the extreme tails of exposure may be particularly important for estimating health burdens, the application of QM in health impact projection has been limited. In this paper we describe and apply five QM methods to estimate excess emergency department (ED) visits due to projected changes in warm-season minimum temperature in Atlanta, USA. We utilized temperature projections from an ensemble of regional climate models in the North American-Coordinated Regional Climate Downscaling Experiment (NA-CORDEX). Across QM methods, we estimated consistent increase in ED visits across climate model ensemble under RCP 8.5 during the period 2050 to 2099. We found that QM methods can significantly reduce between-model variation in health impact projections (50–70% decreases in between-model standard deviation). Particularly, the quantile delta mapping approach had the largest reduction and is recommended also because of its ability to preserve model-projected absolute temporal changes in quantiles.


2019 ◽  
Vol 58 (12) ◽  
pp. 2617-2632 ◽  
Author(s):  
Qifen Yuan ◽  
Thordis L. Thorarinsdottir ◽  
Stein Beldring ◽  
Wai Kwok Wong ◽  
Shaochun Huang ◽  
...  

AbstractIn applications of climate information, coarse-resolution climate projections commonly need to be downscaled to a finer grid. One challenge of this requirement is the modeling of subgrid variability and the spatial and temporal dependence at the finer scale. Here, a postprocessing procedure for temperature projections is proposed that addresses this challenge. The procedure employs statistical bias correction and stochastic downscaling in two steps. In the first step, errors that are related to spatial and temporal features of the first two moments of the temperature distribution at model scale are identified and corrected. Second, residual space–time dependence at the finer scale is analyzed using a statistical model, from which realizations are generated and then combined with an appropriate climate change signal to form the downscaled projection fields. Using a high-resolution observational gridded data product, the proposed approach is applied in a case study in which projections of two regional climate models from the Coordinated Downscaling Experiment–European Domain (EURO-CORDEX) ensemble are bias corrected and downscaled to a 1 km × 1 km grid in the Trøndelag area of Norway. A cross-validation study shows that the proposed procedure generates results that better reflect the marginal distributional properties of the data product and have better consistency in space and time when compared with empirical quantile mapping.


2019 ◽  
Vol 41 (4) ◽  
pp. 374-387 ◽  
Author(s):  
Nguyen Thi Tuyet ◽  
Ngo Duc Thanh ◽  
Phan Van Tan

The study examined the performance of six regional climate experiments conducted under the framework of the Southeast Asia Regional Climate Downscaling/Coordinated Regional Climate Downscaling Experiment-Southeast Asia (SEACLID/CORDEX-SEA) project and their ensemble product (ENS) in simulating temperature at 2 m (T2m) and rainfall (R) in seven climatic sub-regions of Vietnam. The six experiments were named following the names of their driving Global Climate Models (GCMs), i.e., CNRM, CSIRO, ECEA, GFDL, HADG and MPI. The observation data for the period 1986–2005 from 66 stations in Vietnam were used to compare with the model outputs. Results showed that cold biases were prominent among the experiments and ENS well reproduced the seasonal cycle of temperature in the Northeast, Red River Delta, North Central and Central Highlands regions. For rainfall, all the experiments showed wet biases and CSIRO exhibited the best. A scoring system was elaborated to objectively rank the performance of the experiments and the ENS experiment was reported to be the best.


2017 ◽  
Vol 21 (4) ◽  
pp. 2143-2161 ◽  
Author(s):  
Yacouba Yira ◽  
Bernd Diekkrüger ◽  
Gero Steup ◽  
Aymar Yaovi Bossa

Abstract. This study evaluates climate change impacts on water resources using an ensemble of six regional climate models (RCMs)–global climate models (GCMs) in the Dano catchment (Burkina Faso). The applied climate datasets were performed in the framework of the COordinated Regional climate Downscaling Experiment (CORDEX-Africa) project.After evaluation of the historical runs of the climate models' ensemble, a statistical bias correction (empirical quantile mapping) was applied to daily precipitation. Temperature and bias corrected precipitation data from the ensemble of RCMs–GCMs was then used as input for the Water flow and balance Simulation Model (WaSiM) to simulate water balance components.The mean hydrological and climate variables for two periods (1971–2000 and 2021–2050) were compared to assess the potential impact of climate change on water resources up to the middle of the 21st century under two greenhouse gas concentration scenarios, the Representative Concentration Pathways (RCPs) 4.5 and 8.5. The results indicate (i) a clear signal of temperature increase of about 0.1 to 2.6 °C for all members of the RCM–GCM ensemble; (ii) high uncertainty about how the catchment precipitation will evolve over the period 2021–2050; (iii) the applied bias correction method only affected the magnitude of the climate change signal; (iv) individual climate models results lead to opposite discharge change signals; and (v) the results for the RCM–GCM ensemble are too uncertain to give any clear direction for future hydrological development. Therefore, potential increase and decrease in future discharge have to be considered in climate change adaptation strategies in the catchment. The results further underline on the one hand the need for a larger ensemble of projections to properly estimate the impacts of climate change on water resources in the catchment and on the other hand the high uncertainty associated with climate projections for the West African region. A water-energy budget analysis provides further insight into the behavior of the catchment.


2021 ◽  
Author(s):  
Andrea Lira Loarca ◽  
Giovanni Besio

<p>Global and regional climate models are the primary tools to investigate the climate system response to different scenarios and therefore allow to make future projections of different atmospheric variables which are used as input for wave generation models to assess future wave climate. Adequate projections of future wave climate are needed in order to analyze climate change impacts and hazards in coastal areas such as flooding and erosion with waves being the predominant factor with varied temporal variability. </p><p>Bias adjustment methods are commonly used for climate impact variables dealing with systematic errors (biases) found in global and regional climate models.  While bias correction techniques are extended in the climate and hydrological impact modeling scientific communities, there is still a lack of consensus regarding their use in sea climate variables (Parker & Hill, 2017; Lemos et al, 2020; Lira-Loarca et at, 2021)</p><p>In these work we assess the performance of different bias-adjustment methods such as the Empirical Gumbel Quantile Mapping (EGQM) method as a standard method which takes into the account the extreme values of the distribution takes, the Distribution Mapping method using Stationary Mixture Distributions (DM-stMix) allowing for a better representation of each variable in the mean regime and tails and the Distribution Mapping method using Non-Stationary Mixture Distributions (DM-nonstMix) as an improved methods which allows to take into account the temporal variability of wave climate according to different baseline periods such as monthly, seasonal, yearly and decadal. The performance of the different bias adjustment methods will be analyzed with particular interest on the futural temporal behavior of wave climate. The advantages and drawbacks of each bias adjustment method as well as their complexity will be discussed.</p><p> </p><p><em>References:</em></p><ul><li>Lemos, G., Menendez, M., Semedo, A., Camus, P., Hemer, M., Dobrynin, M., Miranda, P.M.A. (2020). On the need of bias correction methods for wave climate projections, Global and Planetary Change, 186, 103109.</li> <li><span>Lira-Loarca, A., Cobos, M., Besio, G., Baquerizo, A. (2021) Projected wave climate temporal variability due to climate change. Stoch Environ Res Risk Assess.</span></li> <li><span>Parker, K. & Hill, D.F. (2017) Evaluation of bias correction methods for wave modeling output, Ocean Modelling 110, 52-65</span></li> </ul><p><br><br></p>


2021 ◽  
Author(s):  
Jason Evans ◽  
Giovanni Di Virgilio ◽  
Annette Hirsch ◽  
Peter Hoffmann ◽  
Armelle Reca Remedio ◽  
...  

<p>The World Climate Research Programme (WCRP) has an international initiative called the COordinated Regional climate Downscaling EXperiment (CORDEX). The goal of the initiative is to provide regionally downscaled climate projections for most land regions of the globe, as a compliment to the global climate model projections performed within the Coupled Model Intercomparison Projects (CMIP). CORDEX includes data from both dynamical and statistical downscaling. It is anticipated that the CORDEX dataset will provide a link to the impacts and adaptation community through its better resolution and regional focus. Participation in CORDEX is open and any researchers performing climate downscaling are encourage to engage with the initiative. Here I present the current status, <span>evaluation and future projections</span> for the CORDEX-AustralAsia <span>ensemble</span>.</p><p>The CORDEX-Australasia ensemble is the largest regional climate projection ensemble ever created for the region. It is a 20-member ensemble made by 6 regional climate models downscaling 11 global climate models. Overall the ensemble produces a good representation of recent climate. Consistent biases within the ensemble include an underestimation of the diurnal temperature range and an underestimation of precipitation across much of southern Australia. Under a high emissions scenario projected temperature changes by the end of the twenty-first century reach ~ 5 K in the interior of Australia with smaller increases found toward the coast. Projected precipitation changes are towards drying, particularly in the most populated areas of the southwest and southeast of the continent. The projected precipitation change is very seasonal with summer projected to see little change leaning toward an increase. These results provide a foundation enabling future studies of regional climate changes, climate change impacts, and adaptation options for Australia.</p>


Forests ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 71 ◽  
Author(s):  
Hua Zhou ◽  
Yang Luo ◽  
Guang Zhou ◽  
Jian Yu ◽  
Sher Shah ◽  
...  

Subtropical forest productivity is significantly affected by both natural disturbances (local and regional climate changes) and anthropogenic activities (harvesting and planting). Monthly measures of forest aboveground productivity from natural forests (primary and secondary forests) and plantations (mixed and single-species forests) were developed to explore the sensitivity of subtropical mountain productivity to the fluctuating characteristics of climate change in South China, spanning the 35-year period from 1981 to 2015. Statistical analysis showed that climate regulation differed across different forest types. The monthly average maximum temperature, precipitation, and streamflow were positively correlated with primary and mixed-forest aboveground net primary productivity (ANPP) and its components: Wood productivity (WP) and canopy productivity (CP). However, the monthly average maximum temperature, precipitation, and streamflow were negatively correlated with secondary and single-species forest ANPP and its components. The number of dry days and minimum temperature were positively associated with secondary and single-species forest productivity, but inversely associated with primary and mixed forest productivity. The multivariate ENSO (EI Niño-Southern Oscillation) index (MEI), computed based on sea level pressure, surface temperature, surface air temperature, and cloudiness over the tropical Pacific Ocean, was significantly correlated with local monthly maximum and minimum temperatures (Tmax and Tmin), precipitation (PRE), streamflow (FLO), and the number of dry days (DD), as well as the monthly means of primary and mixed forest aboveground productivity. In particular, the mean maximum temperature increased by 2.5, 0.9, 6.5, and 0.9 °C, and the total forest aboveground productivity decreased by an average of 5.7%, 3.0%, 2.4%, and 7.8% in response to the increased extreme high temperatures and drought events during the 1986/1988, 1997/1998, 2006/2007, and 2009/2010 EI Niño periods, respectively. Subsequently, the total aboveground productivity values increased by an average of 1.1%, 3.0%, 0.3%, and 8.6% because of lagged effects after the wet La Niña periods. The main conclusions of this study demonstrated that the influence of local and regional climatic fluctuations on subtropical forest productivity significantly differed across different forests, and community position and plant diversity differences among different forest types may prevent the uniform response of subtropical mountain aboveground productivity to regional climate anomalies. Therefore, these findings may be useful for forecasting climate-induced variation in forest aboveground productivity as well as for selecting tree species for planting in reforestation practices.


Sign in / Sign up

Export Citation Format

Share Document