scholarly journals Research of variable characteristics of heat exchange equipment

2019 ◽  
Vol 114 ◽  
pp. 07001
Author(s):  
Tatyana Rafalskaya ◽  
Valery Rudyak

Heat exchangers used in various industries, most often work in conditions of variable flows and temperatures. At the same time, the existing theories of calculation of heat exchanger modes are based on the use of constant dimensionless parameters in any mode of operation. The purpose of this work is to obtain dependencies to determine the effect of coolant temperatures on the variable parameter of the heat exchanger. Using the simulation method, dependencies were found that describe the change in the heat exchanger parameter which made it possible to obtain a general formula for the change in the heat exchanger parameter at varying coolant temperatures. To test the applicability of the existing relations describing the change in the heat exchanger parameter and the formula obtained, a large number of heat exchangers were calculated in variable operating modes. Comparison with the simulation results showed that the ratios of the known theories of heat exchangers do not work in all modes and their application can lead to significant errors. A formula has been obtained allows one to find the effect of coolant temperatures on the variable parameter of the heat exchanger. The formula can be used to predict the modes of large systems.

Author(s):  
N. V. Rydalina ◽  
B. G. Aksenov ◽  
O. A. Stepanov ◽  
E. O. Antonova

Heat exchange capacity increase is one of the main concerns in the process of manufacturing modern heat exchange equipment. Constructing heat exchangers with porous metals is an advanced technique of heat exchange increase. A construction of heat exchangers with porous aluminum is described in this paper. The first heat transfer agent (hot water) flows through thin copper tubes installed within the porous aluminum. The second heat transfer agent (freon) flows through the pores of aluminum. Laboratory facility was created to study such a heat exchanger. Series of experiments were carried out. The purpose of the research presented here is to create a mathematical model of heat exchangers with porous metals, to perform analytical calculation of the heat exchangers and to confirm the results with the experimental data. In this case, one can`t use the standard methods of heat exchangers calculation because the pores inner surface area is indeterminate. The developed mathematical model is based on the equation describing the process of cooling the porous plate. A special mathematical technique is used to take into account the effect of tubes with water. The model is approximate but its solution is analytic. It is convenient. One can differentiate it or integrate it, which is very important. Comparison of calculated and experimental data is performed. Divergence of results is within the limits of experimental error. If freon volatilizes inside the heat exchanger, the heat of phase transition has to be taken into account alongside with heat capacity. The structure of the mathematical model makes it possible. The results presented in this paper prove the practicability of using porous materials in heat exchange equipment.


2021 ◽  
Vol 225 ◽  
pp. 06003
Author(s):  
Oleg Kiselev ◽  
Dmitry Polikarpov ◽  
Anna Demidova

The article discusses the stages of research to determine the possible causes of increased corrosion wear of tube bundles of heat exchangers. The most typical types of damage to heat exchanger pipes are shown, depending on the operating conditions. Recommendations aimed at reducing the corrosion wear of pipe bundles for typical operating conditions at oil refining enterprises.


Author(s):  
I.O. Mikulionok

The possibility of use of the heat-exchangers in whole or in part manufactured with use of polymers and plastics is considered. Despite obvious, at first sight, inexpediency of use of polymeric materials in the heat-exchange equipment (low coefficient of heat conductivity, and also low, in comparison with metals, the strength properties of the majority of the most widespread polymers), «polymeric» heat-exchangers find application in various areas of the industry more and more surely. Classification of heat-exchange apparatuses which constructive elements are executed with use of polymeric materials is proposed. The following signs are the basis for classification: polymer type, a type of polymer meric material, type of the heat-exchange apparatus (a form of heat-exchange elements), reliance on polymeric materials in apparatuses, motion freedom of polymeric heat-exchange elements, level of assembly of a design, and also diameter of tubular elements. Critical analysis the most characteristic designs developed by domestic and foreign designers and inventors is carried out. Ref. 21, Fig. 13.


2019 ◽  
Vol 27 (01) ◽  
pp. 1950008 ◽  
Author(s):  
B. G. Prashantha ◽  
S. Seetharamu ◽  
G. S. V. L. Narasimham ◽  
M. R. Praveen Kumar

In this paper, the design of 50 W thermoacoustic refrigerators operating with air as working substance at 10 bar pressure and 3% drive ratio for a temperature difference of 28 K is described. The design strategies discussed in this paper help in design and development of low cost thermoacoustic coolers compared to helium as the working substance. The design and optimization of spiral stack and heat exchangers, and the promising 0.2[Formula: see text] and 0.15[Formula: see text] resonator design with taper and divergent section with hemispherical end are discussed. The surface area, volume, length and power density of the hemispherical end design with air as working substance is found better compared to the published 10 and 50 W coolers using helium as the working substance. The theoretical design results are validated using DeltaEC software simulation results. The DeltaEC predicts 51.4% improvement in COP (1.273) at the cold heat exchanger temperature of [Formula: see text]C with air as working substance for the 50[Formula: see text]W 0.15[Formula: see text]TDH resonator design compared to the published 50[Formula: see text]W 0.25[Formula: see text]TDH resonator design with helium as working substance.


Author(s):  
T. Q. Ma ◽  
K. T. Ooi ◽  
T. N. Wong

This paper presents simulation results on the geometrical optimization design of bare tube heat exchangers. By linking a mathematical model with an optimization alogorithm, it is possible to predict which combination of five geometrical variables would produce a given coil capacity of a heat exchanger, the minimum core volume size operating at the minimum pressure drop. A constrained multivariable direct search technique is used in which the five geometrical variables and a mixture of five explicit and implicit constraints are accommodated. Using this design method, three typical sizes of bare tube optimization cases have been studied. The simulation results predict significant performance improvements for heat exchanger design. The range of tube outer diameter in this optimization study is from 4.9 to 9.0 mm.


2020 ◽  
Vol 178 ◽  
pp. 01026
Author(s):  
Natalia Rydalina ◽  
Oleg Stepanov ◽  
Elena Antonova

Heat exchangers are widely used in heat supply systems. To increase the efficiency of heat supply systems, heat exchangers with porous metals are proposed to design. There was a test facility set up to study new types of heat exchangers. The countercurrent flow of heat carriers was activated in those heat exchangers. Freon moved through the heat exchanger pores, and water moved through the inner tubes. It should be noted that the porous materials in the heat exchangers differed in the coefficient of porosity. To be compared, one of the heat exchangers did not contain any porous material. The first test cycle proved the feasibility of using porous metals in heat exchange equipment. Afterwards, a simplified mathematical model of the heat exchanger was compiled. Such an analytical form makes a solution convenient for engineering calculations. Numerical calculations based on this model were compared with the experimental data. Heat transfer intensity of materials with different porosity was compared.


2018 ◽  
Vol 13 (1) ◽  
pp. 71-76
Author(s):  
Vasyl Zhelykh ◽  
Olena Savchenko ◽  
Vadym Matusevych

Abstract To save traditional energy sources in mechanical ventilation systems, it is advisable to use low-energy ground energy for preheating or cooling the outside air. Heat exchange between ground and outside air occurs in ground heat exchangers. Many factors influence the process of heat transfer between air in the heat exchanger and the ground, in particular geological and climatic parameters of the construction site, parameters of the ventilation air in the projected house, physical and geometric parameters of the heat exchanger tube. Part of the parameters when designing a ventilation system with earth-air heat exchangers couldn’t be changed. The one of the factors, the change which directly affects the process of heat transfer between ground and air, is convective heat transfer coefficient from the internal surface of the heat exchanger tube. In this article the designs of a horizontal earthair heat exchanger with heat pipes was proposed. The use of heat pipes in designs of a horizontal heat exchanger allows intensification of the process of heat exchange by turbulence of air flow inside the heat exchanger. Besides this, additionally heat transfer from the ground to the air is carried out at the expense of heat transfer in the heat pipe itself.


Author(s):  
Mohammadreza Hasandust Rostami ◽  
Gholamhassan Najafi ◽  
Ali Motevalli ◽  
Nor Azwadi Che Sidik ◽  
Muhammad Arif Harun

Today, due to the reduction of energy resources in the world and its pollutants, energy storage methods and increase the thermal efficiency of various systems are very important. In this research, the thermal efficiency and energy storage of two heat exchangers have been investigated in series using phase change materials (RT82) and single wall carbon nanotubes (SWCNT) and graphene quantum dot nanoparticles (GQD) In this research, two heat exchangers have been used in combination. The first heat exchanger was in charge of storing thermal energy and the second heat exchanger was in charge of heat exchange. The reason for this is to improve the heat exchange of the main exchanger (shell and tube) by using heat storage in the secondary exchanger, which has not been addressed in previous research. The results of this study showed that using two heat exchangers in series, the thermal efficiency of the system has increased. Also, the heat energy storage of the double tube heat exchanger was obtained using phase change materials in the single-walled carbon nanotube composition of about 3000 W. The average thermal efficiency of the two heat exchangers as the series has increased by 52%. In general, the effect of the two heat exchangers on each other was investigated in series with two approaches (energy storage and energy conversion) using fin and nanoparticles, which obtained convincing results.


2021 ◽  
Vol 289 ◽  
pp. 06003
Author(s):  
Alena Likhaeva ◽  
Sergey Grigoriev ◽  
Evgeniy Trushin ◽  
Marat Dasaev

One of the main challenges for the energy industry is to improve the reliability and efficiency of heat exchange equipment in heating plants. Phase-change heat exchangers with low boiling point fluid (LBPF) are widely used in both conventional and renewable energy. The main objectives of increasing the efficiency of heat exchange equipment are to reduce the weight and dimensions, to increase the amount of heat transferred and to reduce the electricity consumption spent on pumping the heat transfer agent. These objectives are achieved by implementing various methods of heat exchange intensification in heat exchange equipment. A key aspect concerning application of various types of heat exchange intensifiers in heat exchange equipment is evaluation of possibility to increase their design efficiency. The paper presents the results of a computational parametric study of changes in efficiency of some LBPF-based plants when intensifying heat exchange processes by modifying functional surfaces of heat exchangers by laser ablation.


2020 ◽  
Vol 216 ◽  
pp. 01124
Author(s):  
Shavkat Agzamov ◽  
Sevinar Nematova

The article discusses the features of the creation and use of efficient heat exchanger. Designs of pipes with a developed heat exchange is presented. The procedure for determining the degree of development of the heat exchanging surface, the heat transfer coefficient, and the calculation of the heat transfer equation are given. As a result of creating efficient heat exchangers, three main parameters are used: the pipe outside diameter; the estimated flow rate; the Prandtl number.


Sign in / Sign up

Export Citation Format

Share Document