scholarly journals Application of porous materials in heat exchangers of heat supply system

Author(s):  
N. V. Rydalina ◽  
B. G. Aksenov ◽  
O. A. Stepanov ◽  
E. O. Antonova

Heat exchange capacity increase is one of the main concerns in the process of manufacturing modern heat exchange equipment. Constructing heat exchangers with porous metals is an advanced technique of heat exchange increase. A construction of heat exchangers with porous aluminum is described in this paper. The first heat transfer agent (hot water) flows through thin copper tubes installed within the porous aluminum. The second heat transfer agent (freon) flows through the pores of aluminum. Laboratory facility was created to study such a heat exchanger. Series of experiments were carried out. The purpose of the research presented here is to create a mathematical model of heat exchangers with porous metals, to perform analytical calculation of the heat exchangers and to confirm the results with the experimental data. In this case, one can`t use the standard methods of heat exchangers calculation because the pores inner surface area is indeterminate. The developed mathematical model is based on the equation describing the process of cooling the porous plate. A special mathematical technique is used to take into account the effect of tubes with water. The model is approximate but its solution is analytic. It is convenient. One can differentiate it or integrate it, which is very important. Comparison of calculated and experimental data is performed. Divergence of results is within the limits of experimental error. If freon volatilizes inside the heat exchanger, the heat of phase transition has to be taken into account alongside with heat capacity. The structure of the mathematical model makes it possible. The results presented in this paper prove the practicability of using porous materials in heat exchange equipment.

Author(s):  
Boris G. Aksenov ◽  
Oleg A. Stepanov ◽  
Natalia V. Rydalina

When creating and manufacturing heat exchangers, one of the main tasks is to increase the efficiency of heat transfer. The use of porous metals in heat exchangers is one of the promising ways to increase the heat transfer intensity, which determines the relevance of the study. The paper provides an overview of the status of this issue on literary sources. The purpose of the work is to conduct an experimental study of a heat exchanger with porous materials, to compile a mathematical model that allows analytical calculations of such heat exchangers, to confirm the correctness of the compiled model experimentally. An experimental bench has been created to study a heat exchanger that uses porous aluminum. The hot fluid is warm water that flows through pipes passing through a porous metal. The cold coolant flowing through the pores is freon, which cools the water. A schematic diagram and description of the stand are presented. A test cycle has been conducted. A comparison of the heat transfer intensity for materials of different porosity is given. Using standard methods for calculating heat exchangers in this case is not possible due to the lack of standard methods for determining the area of the inner surface with pores. In the course of the work, the standard equation describing the cooling of a porous body was proposed to be supplemented by the function of distributed heat sources. As a result, we have obtained a mathematical model of the heat exchanger under consideration in a simplified form, which can be used in technical calculations. The calculation results by the obtained method are correlated with the data of experiments. Deviations of empirical and theoretical data are within acceptable limits. The results obtained make it possible to use porous metals in order to increase the heat transfer intensity in the manufacture of heat exchangers. This technique allows calculations with an unknown heat exchange surface area, taking into account the heat capacity and heat of phase transition, if any. According to the methodology, the article is experimental-theoretical. Experiments are being conducted on the created laboratory bench. In parallel, calculations are made according to the developed mathematical model. The results are compared. Conclusions are made of a theoretical and applied nature.


2020 ◽  
Vol 178 ◽  
pp. 01026
Author(s):  
Natalia Rydalina ◽  
Oleg Stepanov ◽  
Elena Antonova

Heat exchangers are widely used in heat supply systems. To increase the efficiency of heat supply systems, heat exchangers with porous metals are proposed to design. There was a test facility set up to study new types of heat exchangers. The countercurrent flow of heat carriers was activated in those heat exchangers. Freon moved through the heat exchanger pores, and water moved through the inner tubes. It should be noted that the porous materials in the heat exchangers differed in the coefficient of porosity. To be compared, one of the heat exchangers did not contain any porous material. The first test cycle proved the feasibility of using porous metals in heat exchange equipment. Afterwards, a simplified mathematical model of the heat exchanger was compiled. Such an analytical form makes a solution convenient for engineering calculations. Numerical calculations based on this model were compared with the experimental data. Heat transfer intensity of materials with different porosity was compared.


2018 ◽  
Vol 13 (1) ◽  
pp. 71-76
Author(s):  
Vasyl Zhelykh ◽  
Olena Savchenko ◽  
Vadym Matusevych

Abstract To save traditional energy sources in mechanical ventilation systems, it is advisable to use low-energy ground energy for preheating or cooling the outside air. Heat exchange between ground and outside air occurs in ground heat exchangers. Many factors influence the process of heat transfer between air in the heat exchanger and the ground, in particular geological and climatic parameters of the construction site, parameters of the ventilation air in the projected house, physical and geometric parameters of the heat exchanger tube. Part of the parameters when designing a ventilation system with earth-air heat exchangers couldn’t be changed. The one of the factors, the change which directly affects the process of heat transfer between ground and air, is convective heat transfer coefficient from the internal surface of the heat exchanger tube. In this article the designs of a horizontal earthair heat exchanger with heat pipes was proposed. The use of heat pipes in designs of a horizontal heat exchanger allows intensification of the process of heat exchange by turbulence of air flow inside the heat exchanger. Besides this, additionally heat transfer from the ground to the air is carried out at the expense of heat transfer in the heat pipe itself.


2020 ◽  
Vol 216 ◽  
pp. 01124
Author(s):  
Shavkat Agzamov ◽  
Sevinar Nematova

The article discusses the features of the creation and use of efficient heat exchanger. Designs of pipes with a developed heat exchange is presented. The procedure for determining the degree of development of the heat exchanging surface, the heat transfer coefficient, and the calculation of the heat transfer equation are given. As a result of creating efficient heat exchangers, three main parameters are used: the pipe outside diameter; the estimated flow rate; the Prandtl number.


Author(s):  
K. Mohammadi ◽  
W. Heidemann ◽  
H. Mu¨ller-Steinhagen

A semi-analytical model is presented for the evaluation of the performance factor of the inlet zone of an E type shell and tube heat exchanger without leakage flows. The performance factor is defined as the ratio of dimensionless heat transfer coefficients and pressure drops of both vertical and horizontal baffle orientation and therefore facilitates the decision between horizontal and vertical baffle orientation of shell and tube heat exchangers. The model allows the calculation of the performance factor of the inlet zone as a function of the baffle cut, the shell-side Reynolds number at the inlet nozzle and the Prandtl number of the shell-side fluid. The application of the model requires the knowledge of the performance factor of water at baffle cut equal to 24% of the shell inside diameter. For the development of the model a numerical data basis is used due to the lack of experimental data for shell and tube heat exchangers with different baffle orientations. The numerical data are obtained from CFD calculations for steady state conditions within a segmentally baffled shell and tube heat exchanger following the TEMA standards. Air, water and engine oil with Prandtl numbers in the range of 0.7 to 206 are used as shell-side fluids. The semi-analytical model introduced for the performance factor predicts the CFD results with a relative absolute error less than 5%. The presented model has to be validated with further experimental data and/or numerical results which explain the effect of baffle orientation on the shell-side heat transfer coefficient and pressure drop in order to check the general applicability.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Hie Chan Kang ◽  
Se-Myong Chang

This study proposes an empirical correlation for laminar natural convection applicable to external circular finned-tube heat exchangers with wide range of configuration parameters. The transient temperature response of the heat exchangers was used to obtain the heat transfer coefficient, and the experimental data with their characteristic lengths are discussed. The data lie in the range from 1 to 1000 for Rayleigh numbers based on the fin spacing: the ratio of fin height to tube diameter ranges from 0.1 to 0.9, and the ratio of fin pitch to height ranges from 0.13 to 2.6. Sixteen sets of finned-tube electroplated with nickel–chrome were tested. The convective heat transfer coefficients on the heat exchangers were measured by elimination of the thermal radiation effect from the heat exchanger surfaces. The Nusselt number was correlated with a newly suggested composite curve formula, which converges to the quarter power of the Rayleigh number for a single cylinder case. The proposed characteristic length for the Rayleigh number is the fin pitch while that for the Nusselt number is mean flow length, defined as half the perimeter of the mean radial position inside the flow region bounded by the tube surface and two adjacent fins. The flow is regarded as laminar, which covers heat exchangers from a single horizontal cylinder to infinite parallel disks. Consequently, the result of curve fitting for the experimental data shows the reasonable physical interpretation as well as the good quantitative agreement with the correction factors.


2012 ◽  
Vol 516-517 ◽  
pp. 419-424
Author(s):  
Guo Rong Zhu ◽  
Xiao Hua Wang ◽  
Hong Biao Huang ◽  
Hu Chen

In this article, sensitivity analysis was performed using bidirectional single method with shell-and-tube heat exchanger as the basis and the entropy production in the working process of heat exchanger as target, to explore the optimizing direction for heat exchangers with the objective to reduce entropy production. First, the differential element analysis method was used in a case study of the entropy production of the heat transfer process - including the three heat transfer processes of convective heat exchange inside and outside the pipes and heat conduction across the pipe wall and the flow process - the fluid flowing process inside and outside the pipes, and the typical process parameter - dimensionless inlet heat exchange temperature difference, operation parameter - fluid flow rate inside the pipe and structural parameters - the heat transfer pipe inner diameter and length were used as characteristic parameters, to obtain the sensitivity coefficients under the conditions of the example, being respectively 0.95, 0.3, 0.3 and 0.38. The study in this article can provide some support to the energy efficiency evaluation of heat exchangers.


Author(s):  
Piyush Sabharwall ◽  
Mike Patterson ◽  
Vivek Utgikar ◽  
Fred Gunnerson

One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor-process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rationale for considering liquid metals as the working fluid is because of the higher convective heat transfer coefficient. This explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet of NGNP and inlet of the process heat facility. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a tradeoff between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change is presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 675 ◽  
Author(s):  
Jingang Yang ◽  
Yaohua Zhao ◽  
Aoxue Chen ◽  
Zhenhua Quan

Domestic heat exchangers, even though widely used in industry, are not adequate for studies on low-temperature flue-gas use technologies. Despite spite their limitations, very few theoretical models have been investigated based on practical applications. Moreover, most of the existing studies on heat exchangers have focused particularly on one-dimensional and two-dimensional heat transfer models, while limited studies focus on three-dimensional ones. Therefore, this study aims at investigating the thermal performance of a low-temperature flue-gas heat recovery unit in the cold regions. Specifically, this study was conducted in the context of Changchun of Jilin Province, China, a city with the mean ambient temperature of −14 °C and mean diurnal temperature of −10 °C during winter. Experimental results showed that the thermal efficiency of the heat exchanger was higher than 60%. Through assessing the heat exchange coefficient and heat exchange efficiency of the heat exchanger, it is found that the thermal efficiency had been improved up to 0.77–0.83. Furthermore, the ICEPAK software and the standard k-ε RNG turbulence model were used to carry out simulations. The velocity and outlet temperature of fresh airflow and polluted airflow were simulated through setting different inlet temperatures of fresh air and polluted air inlet. Numerical results further indicated that the flow state was laminar flow. The micro heat pipe array side had small eddies and the heat transfer was significantly improved due to the flow of air along the surface of the micro heat pipe.


Author(s):  
L. A. Kushchev ◽  
V. A. Uvarov ◽  
N. Yu. Savvin ◽  
S. V. Chuikin

Statement of the problem. The problem of intensification of heat exchange processes in a plate heat exchanger on the basis of the HH№ 02 heat exchanger of the Ridan company is discussed. It is essential to carry out an analysis of the existing methods of intensification of heat exchange processes in plate devices according to the results of the analysis to choose the most promising method of intensification of heat exchange process and based on it to develop a patent-protected design of a heat exchange plate. Laboratory tests of the intensified plate heat exchanger with increased turbulence of the coolant are performed. The results of thermal tests on a specialized laboratory installation of the resulting and the serial heat exchanger are presented.Results. The results of the comparison of experimental studies of the intensified plate heat exchanger with the increased turbulence of the heat carrier and the serial plate heat exchanger of identical heat power are shown. The graphs of dependence of the heat transfer coefficient, which is the major characteristic of the operation of heat exchange equipment, on the average temperature pressure are designed. Conclusions. As a result of the laboratory tests in the specialized laboratory of BSTU named after V. G. Shukhov and research at the Voronezh State Technical University established a rise in the heat transfer coefficient due to the increased turbulence of the coolant flow, which causes a decrease in metal consumption and reduces the cost of heat exchange equipment.


Sign in / Sign up

Export Citation Format

Share Document