scholarly journals Numerical study on the thermohydraulic performance of a reciprocating room temperature active magnetic regenerator

2019 ◽  
Vol 128 ◽  
pp. 07001
Author(s):  
Georges El Achkar ◽  
Bin Liu ◽  
Rachid Bennacer

In this paper, the thermohydraulic performance of a reciprocating room temperature active magnetic regenerator (AMR), with gadolinium (Gd) particles used as a magnetocaloric material (MCM) and water used as a working fluid, was numerically investigated. A two-dimensional transient flow model was developed using COMSOL Multiphysics, in order to determine the water flow distribution in two AMRs of cross and parallel Gd particles distributions for different water inlet velocities of 0.06 m.s-1, 0.08 m.s-1 , 0.1 m.s-1 and 0.12 m.s-1. The Gd particles have a radius of 1.5 mm and a distance from one another of 0.9 mm. Based on the simulations results of the first model, a two-dimensional transient coupled flow and heat transfer model was then developed using COMSOL Multiphysics, in order to characterise the convective heat transfer in the AMR of cross Gd particles distribution for the same water inlet velocities.

2008 ◽  
Vol 31 (3) ◽  
pp. 432-443 ◽  
Author(s):  
Thomas Frank Petersen ◽  
Nini Pryds ◽  
Anders Smith ◽  
Jesper Hattel ◽  
Henrik Schmidt ◽  
...  

Author(s):  
K. M. Akyuzlu ◽  
Y. Pavri ◽  
A. Antoniou

A two-dimensional, mathematical model is adopted to investigate the development of buoyancy driven circulation patterns and temperature contours inside a rectangular enclosure filled with a compressible fluid (Pr=1.0). One of the vertical walls of the enclosure is kept at a higher temperature then the opposing vertical wall. The top and the bottom of the enclosure are assumed insulated. The physics based mathematical model for this problem consists of conservation of mass, momentum (two-dimensional Navier-Stokes equations) and energy equations for the enclosed fluid subjected to appropriate boundary conditions. The working fluid is assumed to be compressible through a simple ideal gas relation. The governing equations are discretized using second order accurate central differencing for spatial derivatives and first order forward finite differencing for time derivatives where the computation domain is represented by a uniform orthogonal mesh. The resulting nonlinear equations are then linearized using Newton’s linearization method. The set of algebraic equations that result from this process are then put into a matrix form and solved using a Coupled Modified Strongly Implicit Procedure (CMSIP) for the unknowns (primitive variables) of the problem. A numerical experiment is carried out for a benchmark case (driven cavity flow) to verify the accuracy of the proposed solution procedure. Numerical experiments are then carried out using the proposed compressible flow model to simulate the development of the buoyancy driven circulation patterns for Rayleigh numbers between 103 and 105. Finally, an attempt is made to determine the effect of compressibility of the working fluid by comparing the results of the proposed model to that of models that use incompressible flow assumptions together with Boussinesq approximation.


2021 ◽  
Author(s):  
Dasith Liyanage ◽  
Suk-Chun Moon ◽  
Ajith S. Jayasekare ◽  
Abheek Basu ◽  
Madeleine Du Toit ◽  
...  

Abstract High-temperature laser-scanning confocal microscopy (HT-LSCM) has proven to be an excellent experimental technique through in-situ observations of high temperature phase transformation to study kinetics and morphology using thin disk steel specimens. A 1.0 kW halogen lamp, within the elliptical cavity of the HT-LSCM furnace radiates heat and imposes a non-linear temperature profile across the radius of the steel sample. This local temperature profile when exposed at the solid/liquid interface determines the kinetics of solidification and phase transformation morphology. A two-dimensional numerical heat transfer model for both isothermal and transient conditions is developed for a concentrically solidifying sample. The model can accommodate solid/liquid interface velocity as an input parameter under concentric solidification with cooling rates up to 100 K/min. The model is validated against a commercial finite element analysis software package, Strand7, and optimized with experimental data obtained under near-to equilibrium conditions. The validated model can then be used to define the temperature landscape under transient heat transfer conditions.


Author(s):  
Ajay Vallabh ◽  
P.S. Ghoshdastidar

Abstract This paper presents a steady-state heat transfer model for the natural convection of mixed Newtonian-Non-Newtonian (Alumina-Water) and pure Non-Newtonian (Alumina-0.5 wt% Carboxymethyl Cellulose (CMC)/Water) nanofluids in a square enclosure with adiabatic horizontal walls and isothermal vertical walls, the left wall being hot and the right wall cold. In the first case the nanofluid changes its Newtonian character to Non-Newtonian past 2.78% volume fraction of the nanoparticles. In the second case the base fluid itself is Non-Newtonian and the nanofluid behaves as a pure Non-Newtonian fluid. The power-law viscosity model has been adopted for the non-Newtonian nanofluids. A finite-difference based numerical study with the Stream function-Vorticity-Temperature formulation has been carried out. The homogeneous flow model has been used for modelling the nanofluids. The present results have been extensively validated with earlier works. In Case I the results indicate that Alumina-Water nanofluid shows 4% enhancement in heat transfer at 2.78% nanoparticle concentration. Following that there is a sharp decline in heat transfer with respect to that in base fluid for nanoparticle volume fractions equal to and greater than 3%. In Case II Alumina-CMC/Water nanofluid shows 17% deterioration in heat transfer with respect to that in base fluid at 1.5% nanoparticle concentration. An enhancement in heat transfer is observed for increase in hot wall temperature at a fixed volume fraction of nanoparticles, for both types of nanofluid.


2018 ◽  
Vol 21 (8) ◽  
pp. 1286-1297 ◽  
Author(s):  
Antonio Gil ◽  
Andrés Omar Tiseira ◽  
Luis Miguel García-Cuevas ◽  
Tatiana Rodríguez Usaquén ◽  
Guillaume Mijotte

Each of the elements that make up the turbocharger has been gradually improved. In order to ensure that the system does not experience any mechanical failures or loss of efficiency, it is important to study which engine-operating conditions could produce the highest failing rate. Common failing conditions in turbochargers are mostly achieved due to oil contamination and high temperatures in the bearing system. Thermal management becomes increasingly important for the required engine performance. Therefore, it has become necessary to have accurate temperature and heat transfer models. Most thermal design and analysis codes need data for validation; often the data available fall outside the range of conditions the engine experiences in reality leading to the need to interpolate and extrapolate disproportionately. This article presents a fast three-dimensional heat transfer model for computing internal temperatures in the central housing for non-water cooled turbochargers and its direct validation with experimental data at different engine-operating conditions of speed and load. The presented model allows a detailed study of the temperature rise of the central housing, lubrication channels, and maximum level of temperature at different points of the bearing system of an automotive turbocharger. It will let to evaluate thermal damage done to the system itself and influences on the working fluid temperatures, which leads to oil coke formation that can affect the performance of the engine. Thermal heat transfer properties obtained from this model can be used to feed and improve a radial lumped model of heat transfer that predicts only local internal temperatures. Model validation is illustrated, and finally, the main results are discussed.


2011 ◽  
Vol 52-54 ◽  
pp. 1057-1061
Author(s):  
Tao Nie ◽  
Wei Qiang Liu

To obtain temperature distribution in regenerative-cooled liquid propellant rocket nozzle quickly and accurately, three-dimensional numerical simulation employed using empirical formulas. A reduced one-dimensional model is employed for the coolant flow and heat transfer, while three dimensional heat transfer model is used to calculate the coupling heat transfer through the wall. The geometrical model is subscale hot-firing chamber. The numerical results agree well with experimental data, while temperature field in nozzle obtained. In terms of computing time and accuracy of results, this method can provide a reference for optimization design and performance estimation.


2015 ◽  
Vol 26 (12) ◽  
pp. 1550140 ◽  
Author(s):  
Amin Ebrahimi ◽  
Ehsan Roohi

Flow patterns and heat transfer inside mini twisted oval tubes (TOTs) heated by constant-temperature walls are numerically investigated. Different configurations of tubes are simulated using water as the working fluid with temperature-dependent thermo-physical properties at Reynolds numbers ranging between 500 and 1100. After validating the numerical method with the published correlations and available experimental results, the performance of TOTs is compared to a smooth circular tube. The overall performance of TOTs is evaluated by investigating the thermal-hydraulic performance and the results are analyzed in terms of the field synergy principle and entropy generation. Enhanced heat transfer performance for TOTs is observed at the expense of a higher pressure drop. Additionally, the secondary flow generated by the tube-wall twist is concluded to play a critical role in the augmentation of convective heat transfer, and consequently, better heat transfer performance. It is also observed that the improvement of synergy between velocity and temperature gradient and lower irreversibility cause heat transfer enhancement for TOTs.


1989 ◽  
Vol 111 (1) ◽  
pp. 41-45 ◽  
Author(s):  
A. Zebib ◽  
Y. K. Wo

Thermal analysis of forced air cooling of an electronic component is modeled as a two-dimensional conjugate heat transfer problem. The velocity field in a constricted channel is first computed. Then, for a typical electronic module, the energy equation is solved with allowance for discontinuities in the thermal conductivity. Variation of the maximum temperature with the average air velocity is presented. The importance of our approach in evaluating possible benefits due to changes in component design and the limitations of the two-dimensional model are discussed.


Author(s):  
Hiroshi Suzuki ◽  
Shinpei Maeda ◽  
Yoshiyuki Komoda

Two-dimensional numerical computations have been performed in order to investigate the development characteristics of flow and thermal field in a flow between parallel plates swept by a visco-elastic fluid. In the present study, the effect of the cavity number in the domain and of Reynolds number was focused on when the geometric parameters were set constant. From the results, it is found that the flow penetration into the cavities effectively causes the heat transfer augmentation in the cavities in any cavity region compared with that of water case. It is also found that the development of thermal field in cases of the present visco-elastic fluid is quicker compared with that of water cases. The present heat transfer augmentation technique using Barus effect of a visco-elastic fluid is effective in the range of low Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document