scholarly journals Kinematic Analysis of Triple Ball Tie-rod in Ackermann Steering and Tilting Mechanism for Tricycle Application

2019 ◽  
Vol 130 ◽  
pp. 01038
Author(s):  
Wimba Pramudita Wid ◽  
Aufar Syehan ◽  
Danardono Agus Sumarsono

Nowadays, a concept of tilting three-wheel vehicle is introduced, one of which is the electric tilting tricycle to provide an alternative mode of transportation. Some of the tilting tricycle design usinga tadpole trike configuration and it needs an adequate steering system that can be synergized with tilting mechanism. The steering mechanism follows the Ackermann steering geometry. Usage of Ackermann geometry means applying a mechanism of trapezoidal four-bar linkage to the tricycle. To create and maintain the simple trapezoid shape, Triple Ball Tie-rod model, a single rod which supports three ball joints, is proposed. Since the capabilities of the model are yet to be proven, this research evaluates the usageof a tie-rod model to find out its capabilities to support the works of the steering mechanism of the tricycle. The measurements are conducted after the simulation of the 3D model to extract some data such as maximum lean angle and inner and outer steering angles. Another simulation using regular tie-rod model also conducted with the same method for comparison purposes. The results of the study are maximum allowed tilting angle and generated Ackermann steering angles. Each designed models have their respectiveadvantages.

Author(s):  
Mohammad-Amin Rajaie ◽  
Amir Khajepour ◽  
Alireza Pazooki ◽  
Amir Soltani

Most current urban vehicles are scaled-down versions of standard passenger cars. This imposes serious limitations on the safety, comfort, efficiency, dynamic performance and, hence, customer acceptance of the vehicle. This paper provides a unique design of an integrated corner module including an in-wheel suspension, an electrical in-wheel motor, a friction brake, a steering system, and a camber mechanism, which can be used in any urban vehicle design without modification. For the first time, a dual four-bar linkage mechanism has been designed to generate a virtual kingpin axis and provide an active camber. This approach results in a highly compact design for the corner module that can be integrated into narrow vehicles. A full-size prototype of the proposed integrated corner module has been fabricated and tested to validate the new steering mechanism and the integrated corner module characteristics.


2018 ◽  
Vol 4 (5) ◽  
pp. 7
Author(s):  
Shivam Dwivedi ◽  
Prof. Vikas Gupta

As the four-wheel steering (4WS) system has great potentials, many researchers' attention was attracted to this technique and active research was made. As a result, passenger cars equipped with 4WS systems were put on the market a few years ago. This report tries to identify the essential elements of the 4WS technology in terms of vehicle dynamics and control techniques. Based on the findings of this investigation, the report gives a mechanism of electronically controlling the steering system depending on the variable pressure applied on it. This enhances the controlling and smoothens the operation of steering mechanism.


Author(s):  
Sreeharsha Rowduru ◽  
Niranjan Kumar ◽  
Ajit Kumar

This article presents a brief note on the evolution of steering mechanisms and more emphasized on articulated steering system of the load haul dump machine. In this respect, pictorial representation of the evolution of steering mechanisms for on-road and articulated steering mechanisms of the load haul dump machine is made from the available literature. Critical review on basic elements required for the complete automation of the load haul dump vehicle steering system is presented. Different types of controllers for path tracking error minimization of the scale-modeled or simulated model of the load haul dump steering system are tabulated. Few case studies stimulating the complete automation of the load haul dump steering system employed on the field are also discussed. Challenges and some research gaps in making fully automated steering system of the load haul dump machine are identified in this review article. At the end, based on the critical review, some novel methods for making the fully automated steering system of the load haul dump machine is provided, which is the potential future work for the design and development of feasible automatic steering system.


2011 ◽  
Vol 84-85 ◽  
pp. 289-293
Author(s):  
Yun Liu

Take the German Scheuerler’s four-axle trailer steering mechanism for the study, establish the simulation model of the steering system. After this, the simulation optimization and analysis to model was done with ADAMS software. The results of the analysis show that the objective function’s value of the optimal vehicle steering mechanism model is superior to the objective function’s value of the initial model.


2012 ◽  
Vol 490-495 ◽  
pp. 2191-2195
Author(s):  
Jing Gao Lin ◽  
Jue Yang ◽  
Wen Ming Zhang

In the paper, analysis and comparison is made for different optimization design methods of the separation steering trapezoidal mechanism based on the steering system of 170 tons mining dump truck. The optimal design method is obtained, and research shows that the steering mechanism analysis method introduced in many automotive design textbooks has errors and should be improved.


Author(s):  
Jing-Shan Zhao ◽  
Xiang Liu ◽  
Zhi-Jing Feng ◽  
Jian S Dai

This article focuses on the synthesis of a steering mechanism that exactly meets the requirements of Ackermann steering geometry. It starts from reviewing of the four-bar linkage, then discusses the number of points that a common four-bar linkage could precisely trace at most. After pointing out the limits of a four-bar steering mechanism, this article investigates the turning geometry for steering wheels and proposes a steering mechanism with incomplete noncircular gears for vehicle by transforming the Ackermann criteria into the mechanism synthesis. The pitch curves, addendum curves, dedendum curves, tooth profiles and transition curves of the noncircular gears are formulated and designed. Kinematic simulations are executed to demonstrate the target of design.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Hongtao Li ◽  
Wentie Niu ◽  
Shengli Fu ◽  
Dawei Zhang

Due to the complicated design process of gear train, optimization is a significant approach to improve design efficiency. However, the design of gear train is a complex multiobjective optimization with mixed continuous-discrete variables under numerous nonlinear constraints, and conventional optimization algorithms are not suitable to deal with such optimization problems. In this paper, based on the established dynamic model of steering mechanism for rotary steering system, the key component of which is a planetary gear set with teeth number difference, the optimization problem of steering mechanism is formulated to achieve minimum dynamic responses and outer diameter by optimizing structural parameters under geometric, kinematic, and strength constraints. An optimization procedure based on modified NSGA-II by incorporating dynamic crowding distance strategies and fuzzy set theory is applied to the multiobjective optimization. For comparative purpose, NSGA-II is also employed to obtain Pareto optimal set, and dynamic responses of original and optimized designs are compared. The results show the optimized design has better dynamic responses with minimum outer diameter and the response decay decreases faster. The optimization procedure is feasible to the design of gear train, and this study can provide guidance for designer at the preliminary design phase of mechanical structures with gear train.


2014 ◽  
Vol 644-650 ◽  
pp. 29-32
Author(s):  
Lei Zhang ◽  
Jie Xuan Lou ◽  
En Guo Dong

In order to improve overall vehicle performance and decrease movement deviation caused by uncertainties from automobile chassis, a robust vehicle chassis model is built with steering system, suspension system and braking system. In the model, the length of the steering trapezoid arm, the bottom angle of trapezoid mechanism, inclination angle, caster, camber and toe-in are defined as controllable variables, and load, driving force, steering torque are defined as noise factors. The optimum objectives include the maximum turning angle error of steering mechanism, the maximum braking sideslip and the maximum swing angle of front wheel on bumpy road. Taguchi method is applied to solve the robust result for automobile chassis model. Compared that the variances of objective values are decreased with the same noise factors and the robustness of sub-systems of chassis is improved.


Author(s):  
Kemparaju C.R. ◽  
Mohammed Nabeel Ahmed ◽  
B Meghanath ◽  
Mayur Laxman Kesarkar ◽  
Manoj DR

The main aim of any design must not solely be targeted on customer satisfaction however conjointly customer safety following this the amount of accidents are witness solely because of poor lighting facilities provided in automobiles on curved road static headlights are insufficient since they point tangential it along any point of curve instead of pointing in the vehicles direction so to avoid this problem steering controlled headlamp system has been projected which might hopefully flip out to be a boon to the individual driving through the sinusoidal roads throughout night times. Special safety features are built into cars for years some for the security of car’s occupants only, and some for the security of others. One among the alternatives available in design and fabrication of steering controlled headlight system. car safety is important to avoid automobile accidents or to minimise the harmful effect of accidents, especially as concerning human life and health. automobiles are controlled by incorporating steering controlled headlight mechanism. The Ackerman steering mechanism helps the motive force to guide the moving vehicles calls on the road by turning it right or left consistent with his needs thus a combination of the steering system and embedded system link kills the headlights within the direction as per the rotation of the steering wheel. this mechanism has been incorporated in BMW, Audi Q-7 and Benz etc., to make sure a safer drive, but our main aim is to implement the system in all vehicles at lower cost.


Sign in / Sign up

Export Citation Format

Share Document