scholarly journals Effects of Different Compound Treatments on Cold Resistance of Pitaya Plants

2019 ◽  
Vol 131 ◽  
pp. 01112
Author(s):  
Qian Luo ◽  
Tingting Wang ◽  
Lanlei Wu ◽  
Jirui Zhang ◽  
Gong Yan ◽  
...  

In this study, using red pulp pitaya plants variety ’Taiwan No. 6’ as experiment material, 2, 4-epitheloside (BR), betaine (GB), calcium chloride (CaCl2) and salicylic acid (SA) were selected as experimental factors which were set at three levels. The effects of different treatments on the cell membrane stability and osmotic adjustment substances of pitaya plants were studied by orthogonal design. The results showed that salicylic acid was the main factor affecting the relative conductivity and soluble sugar content. 2, 4-epibrassinolide was the main factor affecting the content of malondialdehyde and free proline. CaCl2 was the main factor affecting the soluble protein content. The best concentration combination for improving the cold resistance of pitaya plants was as follows: BR 1 μg/L, GB 2.5 mmol/L, CaCl2 250 mg/L, and GA 0.5 mmol/L.

2019 ◽  
Vol 131 ◽  
pp. 01113
Author(s):  
Yan Gong ◽  
Xiaoyi Bi ◽  
Lijun Deng ◽  
Juan Hu ◽  
Shan Jiang ◽  
...  

The red pulp pitaya variety ’Taiwan No. 2’ and the white pulp pitaya variety ’white crystal’ were used as experimental materials, which were cold stressed at low temperature of 3 °C for 48h, 96h, and recovering at room temperature after 96h cold stress for control. The relative conductivity (REC), malondialdehyde content (MDA), soluble sugar content (SS), soluble protein content (SP), free proline content (Pro), activity of superoxide dismutase (SOD), and catalase (CAT) were determined and the cold resistance were analyzed. The results showed that, after cold stress, the SP, Pro content and SOD and CAT activities of ’White Crystal’ pitaya were higher than that of ’Taiwan No. 2’ pitaya. It showed that the cold resistance of ’White Crystal’ white pulp pitaya was stronger than that of ’Taiwan No. 2’ red pulp pitaya.


2019 ◽  
Vol 136 ◽  
pp. 06001
Author(s):  
Jing Sun ◽  
Aihui Li ◽  
Qianhe Jing ◽  
Yingying Huang ◽  
Jiaxi Han ◽  
...  

A pot experiment was conducted to study the effects of different concentrations of chitosan solutions (0, 1, 2, 4, 6 g/L) on soluble sugar content in Prunus davidiana seedlings. The result showed that there was no significant difference of the soluble sugar content in roots, stems, leaves and shoot in P. davidiana seedlings between at 1 g/L concentration and the control. All concentration treatments were reduced the soluble sugar content in roots and stems of P. davidiana seedlings compared with the control. On the contrary, all concentration treatments were improved the soluble sugar content in leaves and shoot of P. davidiana seedlings compared with the control and the concentration treatment of 2 g/L and 4 g/L was at a higher level. All concentration treatments were improved the content in relative conductivity of blade in P. davidiana seedlings and the concentration treatment of 4 g/L was at a higher level. On the contrary, all concentration treatments were reduced the content in soil conductivity. Therefore, the chitosan solutions concentration of 2 g/L and 4 g/L concentration was beneficial to soluble sugar content in P. davidiana seedlings. On the contrary, high concentration of chitosan solutions was not good for soluble sugar content.


2017 ◽  
Vol 42 (3) ◽  
pp. 475-485 ◽  
Author(s):  
JA Chowdhury ◽  
MA Karim ◽  
QA Khaliq ◽  
AU Ahmed

An experiment was conducted in a venylhouse at the environmental stress site of Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur during September to December 2012 to study the effect of drought stress on proline content, soluble sugar content, chlorophyll content and cell membrane stability of soybean genotypes. Four studied genotypes viz., Shohag, BARI Soybean-6 and BD2331 (relatively stress tolerant) and BGM2026 (susceptible) were tested against two water regimes such as water stress and non-stress. Results indicated that due to drought stress there was an increase in proline content and soluble sugar content and decrease in chlorophyll a content, chlorophyll b content, total chlorophyll content, chlorophyll a/b ratio and cell membrane stability. Proline and soluble sugar showed more content in tolerant genotype than in susceptible ones. Chlorophyll reduction was most significant and cell membrane stability was found minimal in susceptible genotypes. From the result, genotype BGM2026 which recorded the lowest proline, soluble sugar content and highest chlorophyll reduction and cell membrane injury was considered as drought susceptible. The variety/genotype of soybean such as BARI Soybean-6, Shohag and BD2331 were more drought stress tolerant and better mechanisms of drought tolerance.Bangladesh J. Agril. Res. 42(3): 475-485, September 2017


2020 ◽  
Vol 145 (4) ◽  
pp. 257-266 ◽  
Author(s):  
Mingyue Bao ◽  
Minmin Liu ◽  
Qingxia Zhang ◽  
Tonglin Wang ◽  
Xia Sun ◽  
...  

Herbaceous peony (Paeonia lactiflora Pall.) is a well-known ornamental plant with abundant flower colors. However, our understanding of the underlying mechanisms of flower color formation is limited. In this study, a wild sample of herbaceous peony (collected from Heze, China) and eight cultivars with different colors were selected for experimental investigation. The Royal Horticultural Society Color Chart was used to determine flower color, and the anatomic structure; cell sap pH value; moisture content (MC); condensed tannin content (Ct); soluble sugar and soluble protein content of the petals; and content and composition of anthocyanin, flavonoids, and carotenoids in the petals were examined. 1) In the white, pinkish white, pale purple, purplish pink, and reddish purple cultivars, deeper color was associated with greater total amounts of anthocyanin (TA). Hypochromic effects were observed for kaempferol-7-O-glucoside (Km7G), myricetin-3-rhamnoside (My3R), and luteolin-7-O-glucoside (Lu7G). The accumulation of quercetin-3-O-glucoside (Qu3G) and lutein affected yellow color formation in the petals. 2) There are papillate epidermal cells in the petals of the wild P. lactiflora sample, ‘Lanyucangjin’, and ‘Dongjingnvlang’. 3) Cell sap pH and MC of the petals of white, pinkish white, pale purple, and purplish pink cultivars were greater than those of the purplish red and most of the reddish purple cultivars. 4) The Ct was greatest in the purplish red cultivars, whereas no condensed tannins were detected in the white, pinkish white, and pale purple cultivars. 5) There were no significant correlations among soluble sugar content, soluble protein content, and the other physiological indications.


2011 ◽  
Vol 183-185 ◽  
pp. 505-509
Author(s):  
Xue Han ◽  
Bing Han ◽  
Shen Kui Liu

Hosta undulate, Hosta plantaginea and Hosta plantaginea ‘Rosea’ were introduced to Harbin to evaluate the cold resistance compared to Hosta ventricosa stearn which can survive during the winter in Harbin. The physiology characteristics of Hosta species were determined under ground conditions. Along with the temperature drop, the increase of relative conductivity and MDA content of Hosta undulate were lower than Hosta plantaginea and Hosta plantaginea ‘Rosea’. Whereas contents of soluble sugar and free praline of Hosta undulate were higher than these two Hosta species. In view of the minimum temperature of winter in Harbin, chilling tolerance were conducted at -35°C and -40°C for 3h, 6h and 9h. Hosta undulate shows outstanding cold resistance and recovery growth.


2018 ◽  
Vol 5 (03) ◽  
Author(s):  
ARADHNA KUMARI ◽  
IM KHAN ◽  
ANIL KUMAR SINGH ◽  
SANTOSH KUMAR SINGH

Poplar clone Kranti was selected to assess the morphological, physiological and biochemical responses under drought at different levels of water stress, as it is a common clone used to be grown in Uttarakhand for making paper and plywood. The cuttings of Populus deltoides L. (clone Kranti) were exposed to four different watering regimes (100, 75, 50 and 25% of the field capacity) and changes in physiological and biochemical parameters related with drought tolerance were recorded. Alterations in physiological (i.e. decrease in relative water content) and biochemical parameters (i.e. increase in proline and soluble sugar content and build-up of malondialdehyde by-products) occurred in all the three levels of water stress, although drought represented the major determinant. Drought treatments (75%, 50% and 25% FC) decreased plant height, radial stem diameter, harvest index, total biomass content and RWC in all the three watering regimes compared to control (100% FC). Biochemical parameters like proline, soluble sugar and MDA content increased with severity and duration of stress, which helped plants to survive under severe stress. It was analyzed that for better wood yield poplar seedlings should avail either optimum amount of water (amount nearly equal to field capacity of soil) or maximum withdrawal up to 75% of field capacity up to seedling establishment period (60 days). Furthermore, this study manifested that acclimation to drought stress is related with the rapidity, severity, and duration of the drought event of the poplar species.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lawan Gana Ali ◽  
Rosimah Nulit ◽  
Mohd Hafiz Ibrahim ◽  
Christina Yong Seok Yien

AbstractRice is an important staple crop produced and consumed worldwide. However, poor seed emergence is one of the main impediments to obtaining higher yield of rice especially in hot and dry ecosystems of the world that are ravaged by drought. Therefore, this study was carried out to evaluate the effects of potassium nitrate (KNO3), salicylic acid (SA) and silicon dioxide (SiO2) priming in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44 rice under drought conditions. Rice seedlings primed with 2.5% and 5% KNO3, 3% and 3.5% SiO2, and 1 mM and 2.5 mM SA were subjected to three drought levels of low, moderate and severe under the greenhouse. Seed emergence, seedling growth, biochemical attributes and antioxidant activities were thereafter evaluated. Seed priming experiments were laid in a completely randomized design with five replicates per treatment. The results found that rice seedlings responded differently to different priming treatments. However, all primed rice seedlings had significantly (P ≤ 0.05) improved emergence percentage (72–92%), seedling growth, seedling vigor, seedling fresh and dry biomass and shorter emergence time compared with controls. Likewise, total soluble protein content, activities of catalase, ascorbate peroxidase and superoxide dismutase, carbohydrate, soluble sugar and total chlorophyll contents of rice seedlings were increased by more than two-folds by seed priming compared with control. Salicylic acid showed less effect in increasing emergence, seedling growth, antioxidant activities and biochemical attributes of rice. Thus, this study established that seed priming with KNO3 (2.5% and 5%) and SiO2 (3% and 3.5%) were more effective in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44. Thus, priming of FARO44 rice with this chemical is recommended for fast emergence, seedling growth and drought resistance in dry ecosystems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongyi Zhao ◽  
Juelan Guan ◽  
Qing Liang ◽  
Xueyuan Zhang ◽  
Hongling Hu ◽  
...  

AbstractThe effects of cadmium stress on the growth and physiological characteristics of Sassafras tzumu Hemsl. were studied in pot experiments. Five Cd levels were tested [CT(Control Treatment) : 0 mg/kg, Cd5: 5 mg/kg, Cd20: 20 mg/kg, Cd50: 50 mg/kg, and Cd100: 100 mg/kg]. The growth and physiological characteristics of the sassafras seedlings in each level were measured. The results showed that soil Cd had negative influences on sassafras growth and reduced the net growth of plant height and the biomass of leaf, branch and root. Significant reductions were recorded in root biomass by 18.18%(Cd5), 27.35%(Cd20), 27.57%(Cd50) and 28.95%(Cd100). The contents of hydrogen peroxide decreased first then increased while malondialdehyde showed the opposite trend with increasing cadmium concentration. Decreases were found in hydrogen peroxide contents by 10.96%(Cd5), 11.82%(Cd20) and 7.02%(Cd50); increases were found in malondialdehyde contents by 15.47%(Cd5), 16.07%(Cd20) and 7.85%(Cd50), indicating that cadmium stress had a certain effect on the peroxidation of the inner cell membranes in the seedlings that resulted in damage to the cell membrane structure. Superoxide dismutase activity decreased among treatments by 17.05%(Cd5), 10,68%(Cd20), 20.85%(Cd50) and 8.91%(Cd100), while peroxidase activity increased steadily with increasing cadmium concentration; these results suggest that peroxidase is likely the main protective enzyme involved in the reactive oxygen removal system in sassafras seedlings. Upward trends were observed in proline content by 90.76%(Cd5), 74.36%(Cd20), 99.73%(Cd50) and 126.01%(Cd100). The increase in proline content with increasing cadmium concentration indicated that cadmium stress induced proline synthesis to resist osmotic stress in the seedlings. Compared to that in CT, the soluble sugar content declined under the different treatments by 32.84%(Cd5), 5.85%(Cd20), 25.55%(Cd50) and 38.69%(Cd100). Increases were observed in the soluble protein content by 2.34%(Cd5), 21.36%(Cd20), 53.15%(Cd50) and 24.22%(Cd100). At different levels of cadmium stress, the chlorophyll content in the seedlings first increased and then decreased, and it was higher in the Cd5 and Cd20 treatments than that in the CT treatment. These results reflected that cadmium had photosynthesis-promoting effects at low concentrations and photosynthesis-suppressing effects at high concentrations. The photosynthetic gas exchange parameters and photosynthetic light-response parameters showed downward trends with increasing cadmium concentration compared with those in CT; these results reflected the negative effects of cadmium stress on photosynthesis in sassafras seedlings.


Author(s):  
Xing Huang ◽  
Yongsheng Liang ◽  
Baoqing Zhang ◽  
Xiupeng Song ◽  
Yangrui Li ◽  
...  

AbstractSugarcane is an important crop worldwide, and most sugar is derived directly from sugarcane. Due to its thermophilic nature, the yield of sugarcane is largely influenced by extreme climate conditions, especially cold stress. Therefore, the development of sugarcane with improved cold tolerance is an important goal. However, little is known about the multiple mechanisms underlying cold acclimation at the bud stage in sugarcane. In this study, we emphasized that sensitivity to cold stress was higher for the sugarcane variety ROC22 than for GT42, as determined by physical signs, including bud growth capacity, relative conductivity, malonaldehyde contents, and soluble sugar contents. To understand the factors contributing to the difference in cold tolerance between ROC22 and GT42, comparative transcriptome analyses were performed. We found that genes involved in the regulation of the stability of the membrane system were the relative determinants of difference in cold tolerance. Additionally, genes related to protein kinase activity, starch metabolism, and calcium signal transduction were associated with cold tolerance. Finally, 25 candidate genes, including 23 variety-specific and 2 common genes, and 7 transcription factors were screened out for understanding the possible cold resistance mechanism. The findings of this study provide candidate gene resources for cold resistance and will improve our understanding of the regulation of cold tolerance at the bud stage in sugarcane.


Sign in / Sign up

Export Citation Format

Share Document