scholarly journals Activity Characteristics and Safety distance of Gaoliying Ground Fissure in Beijing

2019 ◽  
Vol 79 ◽  
pp. 02009
Author(s):  
Haigang Wang ◽  
Tongchun Qin ◽  
Haipeng Guo ◽  
Juyan Zhu ◽  
Yunlong Wang ◽  
...  

In all ground fissures in Beijing, Gaoliying Ground Fissure has characteristics of highly activity, and it cause serious damages on constructoins. With the distribution as well as the development of land subsidence and the change of the groundwater level, a series of work has been conducted to explain the mechanism of the formation of Gaoliying Ground Fissure. For example, field damage investigations and trench observations were used to define the affected distance of ground fissure; three-dimensional deformation was monitored to determine active characteristic of ground fissure. This paper points out that Gaoliying ground fissure is controlled by Huangzhuang-Gaoliying Fault, which mainly moves in the vertical direction. The rapid decrease of the ground water level greatly increases the development of ground fissure. The distance of damaged zones affected by ground fissure in the hanging-wall of the fault reaches 49.5m, and the distance of damaged zones in the footwall of the fault is 17.5 m. A suggested safety distance of type-one and type-two buildings is 100 m. For type-three buildings, the suggested safety distance is 80 m.

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2607
Author(s):  
Xianglei Liu ◽  
Shan Su ◽  
Jing Ma ◽  
Wanxin Yang

This study proposes a novel instantaneous total energy method to perform an activity analysis of ground fissures deformation, which is calculated by integrating the extreme-point symmetric mode decomposition (ESMD) method and kinetic energy based on the time-series displacement acquired by shape acceleration array (SAA) sensors. The proposed method is tested on the Xiwang Road fissure in Beijing, China. First, to fully monitor the hanging wall and footwall of the monitored ground fissure, a 4 m-long SAA in the vertical direction and an 8 m-long SAA in the horizontal direction were embedded in a ground fissure to obtain an accurate time-series displacement with an accuracy of ±1.5 mm/32 m and a displacement acquisition frequency of once an hour. Second, to improve the accuracy of the activity analysis, the ESMD method and Spearman’s rho are applied to perform signal denoising of the original time-series displacement obtained by the SAA sensors. Finally, the instantaneous total energy is obtained to analyze the activity of the monitored ground fissure. The results demonstrate that the proposed method is more reliable to reflect the activity of a monitored ground fissure compared to the time-series displacement.


2020 ◽  
Vol 12 (22) ◽  
pp. 3756
Author(s):  
Wei Shi ◽  
Guan Chen ◽  
Xingmin Meng ◽  
Wanyu Jiang ◽  
Yan Chong ◽  
...  

Land subsidence is one of the major urban geological hazards, which seriously restricts the development of many cities in the world. As one of the major cities in China, Xi’an has also been experiencing a large area of land subsidence due to excessive exploitation of groundwater. Since the Heihe Water Transfer Project (HWTP) became fully operational in late 2003, the problem of subsidence has been restrained, but other issues, such as ground rebounds, have appeared, and the effect of the underground space utilization on land subsidence remains unsolved. The spatial-temporal pattern of land subsidence and rebound in Xi’an after HWTP and their possible cause have so far not been well understood. In this study, the evolutionary characteristics of land subsidence and rebound in Xi’an city from 2007–2019 was investigated using Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-SAR) technology to process the Advanced Land Observing Satellite (ALOS) and Sentinel-1A SAR datasets, and their cause and the correlation with groundwater level changes and the underground space utilization were discussed. We found that the land subsidence rate in the study area slowed from 2007–2019, and the subsidence area shrank and gradually developed into three relatively independent and isolated subsidence areas primarily. Significant local rebound deformation up to 22 mm/y commenced in the groundwater recharge region during 2015–2019. The magnitude of local rebound was dominated by the rise in groundwater level due to HWTP, whereas tectonic faults and ground fissures control the range of subsidence and the uplift area. The influence of building load on surface deformation became increasingly evident and primarily manifested by slowing the subsidence reduction trend. Additionally, land subsidence caused by the disturbances during the subway construction period was stronger than that in the operational stage. Future land subsidence in Xi’an is predicted to be alleviated overall, and the areas of rebound deformation will continue increasing for a limited time. However, uneven settlement range may extend to the Qujiang and Xixian New District due to the rapid urban construction. Our results could provide a scientific basis for land subsidence hazard mitigation, underground space planning, and groundwater management in Xi’an or similar regions where severe ground subsidence was induced by rapid urbanization.


2012 ◽  
Vol 212-213 ◽  
pp. 399-406
Author(s):  
C.H. Lee ◽  
Kuan Wei Chen ◽  
Jung Nan Chang ◽  
Wei Ping Chen ◽  
Jung Wei Chen

The Taipei Basin in Taiwan is an extremely special case under the constraints of environmental conditions. Pumping of groundwater in the basin was banned in 1968 due to the land subsidence. Since then, groundwater level in the Taipei basin has risen over the years and the land subsidence has also stopped. However, due to the continuous rise of groundwater level, the soil liquefaction potential of saturated sand soil strata has increased. Thus, the groundwater in Taipei basin should be controlled based on the suitable groundwater level to reduce the possibility of land subsidence or soil liquefaction. This study proposes a novel performance of groundwater management model, which considers the three aspects of safe yield, soil liquefaction, and land subsidence. In this process, a three-dimensional groundwater numerical model is primarily established with MODFLOW, and the safe yield and groundwater level are deduced through the Hill method. The second part requires an estimation of the soil liquefaction potential by applying the Seed97 method. The third part of the process includes an estimation of the subsidence of sand by adopting the Ishihara method and the subsidence of clay blanket through the Terazaghi method. Finally, combine the limited groundwater level through the application of the said methods, the proper scope for the level of groundwater in the Taipei Basin is then estimated. Hence, the maximum amount of groundwater that can be pumped could be estimated based on the suitable lower limit of groundwater level, and the minimum amount of groundwater that can be pumped could be estimated based on the suitable upper limit of groundwater level. The study result indicates the central region in the basin has a high potential of soil liquefaction, while the periphery of the basin has a high potential for land subsidence. In consideration of three environmental limited constraints, namely, safe yield of groundwater, soil liquefaction, and land subsidence, could estimate the maximum groundwater amount that can be generated per annum is about 0.77x109m3 to 1.03x109m3, while the minimum groundwater amount per annum is about 0.53x 109m3 to 0.71x109m3.


2019 ◽  
Vol 11 (12) ◽  
pp. 1466 ◽  
Author(s):  
Mingliang Gao ◽  
Huili Gong ◽  
Xiaojuan Li ◽  
Beibei Chen ◽  
Chaofan Zhou ◽  
...  

Land subsidence is a global environmental geological hazard caused by natural or human activities. The high spatial resolution and continuous time coverage of interferometric synthetic aperture radar (InSAR) time series analysis techniques provide data and a basis for the development of methods for the investigation and evolution mechanism study of regional land subsidence. Beijing, the capital city of China, has suffered from land subsidence for decades since it was first recorded in the 1950s. It was reported that uneven ground subsidence and fractures have seriously affected the normal operation of the Beijing Capital International Airport (BCIA) in recent years before the overhaul of the middle runway in April 2017. In this study, InSAR time series analysis was successfully used to detect the uneven local subsidence and ground fissure activity that has been gradually increasing in BCIA since 2010. A multi-temporal InSAR (MT-InSAR) technique was performed on 63 TerraSAR-X/TanDem-X (TSX/TDX) images acquired between 2010 and 2017, then deformation rate maps and time series for the airport area were generated. Comparisons of deformation rate and displacement time series from InSAR and ground-leveling were carried out in order to evaluate the accuracy of the InSAR-derived measurements. After an integrated analysis of the distribution characteristics of land subsidence, previous research results, and geological data was carried out, we found and located an active ground fissure. Then main cause of the ground fissures was preliminarily discussed. Finally, it can be conducted that InSAR technology can be used to identify and monitor geological processes, such as land subsidence and ground fissure activities, and can provide a scientific approach to better explore and study the cause and formation mechanism of regional subsidence and ground fissures.


2013 ◽  
Vol 353-356 ◽  
pp. 333-336
Author(s):  
Chao Liu ◽  
Li Jun Su ◽  
Xing Qian Xu

The subsidence value in fissure site and no fissure site respectively is calculated when ground water is pumped. The relationship between ground fissures and ground subsidence is determined by calculation and then the cause of land subsidence is concluded. This study can solve the problem of ground subsidence in the construction of south section of Xian metro line 2 and it offers theoretic basis of prevention and treatment.


Author(s):  
M. M. Peng ◽  
C. Y. Zhao ◽  
Q. Zhang ◽  
J. Zhang ◽  
Y. Y. Liu

The ancient Xi’an, China, has been suffering severe land subsidence and ground fissure hazards since the 1960s, which has affected the safety of Subways. Multi-sensor SAR data are conducted to monitor the latest complex ground deformation and its influence on subway line No.3 over Xi’an. Annual deformation rates have been retrieved to reveal the spatiotemporal evolution of ground subsidence in Xi’an city from 2013 to 2017. Meanwhile, the correlation between land subsidence and ground fissures are analyzed by retrieving the deformation differences in both sides of the fissures. Besides, the deformation along subway line No. 3 is analyzed, and the fast deformation section is quantitatively studied. Finally, a flat lying sill model with distributed contractions is implemented to model the InSAR deformation over YHZ subsidence center, which manifests that the ground deformation is mainly caused by groundwater withdrawal.


2011 ◽  
Vol 250-253 ◽  
pp. 2342-2345 ◽  
Author(s):  
Yang Liu ◽  
Kai Ling Li ◽  
Yu Ming Men ◽  
Guang Yuan Weng ◽  
Hong Jia Liu

The interaction mechanism, between soil and U-shaped Subway tunnel, is studied by numerical simulation in the environment of ground fissures. The Subway Line 2 through the ground fissures in Xi’an. The analysis results show that the soil mass influenced by the relative displacement and the vertical displacement gradually increases with the relative displacement increasing of ground fissures movement. The deformation area of tunnel lies in the two sides of presupposed ground fissure, and the area enlarge with vertical relative displacement increasing. The tunnel structure damages at the ground fissures when the relative displacement reaches to 100mm. The footwall part is in tension and the hanging wall part is under pressure on the top of tunnel structure at the ground fissure. The footwall part is under pressure and the hanging wall part is in tension on the bottom of tunnel structure at the ground fissure. In the practical projects, the sectional type tunnel should be employed when the Subway tunnel through the ground fissures.


Author(s):  
Y. Yang ◽  
Y. Luo ◽  
M. Liu ◽  
R. Wang ◽  
H. Wang

Abstract. This study overviews the development history, current situation, impact, and hazards of land subsidence and ground fissure disasters in the Beijing Plain (BP) and focuses on the disaster distribution and features of disaster-causing mechanisms. Currently, the BP is still in a rapid developmental stage of land subsidence. The development and distribution of land subsidence are affected by various factors including the thickness of Quaternary compressible clay, groundwater overexploitation, and the rapid development of urban construction. The causes of ground fissures in the BP are complex and diverse, with evidence of structure fissures, non-structure fissures, and mixed genesis fissures. Investigations of the Gaoliying ground fissure have shown that this fissure has evidence of fracture activity, with vertical deformation that is more significant than horizontal deformation. Furthermore, this ground fissure has characteristics of inter-annual periodicity and annual jumping. The land subsidence and ground fissures are all under structural control and impact each other, and more severe hazards may be induced under the superimposition of these two types of disasters. Effective measures and suggestions for disaster prevention and control are recommended on the basis of this study.


2013 ◽  
Vol 405-408 ◽  
pp. 1334-1339
Author(s):  
Yi Yuan ◽  
Qiang Bing Huang ◽  
Jie Han ◽  
Ming Li Li

A model test was performed to investigate the impact of active ground fissure on metro tunnel. The test results show that under the action of active ground fissure, the metro tunnel behaviors as a cantilever elastic foundation beam, and the top is in tension and its bottom is in compression. The tensile parts are located in the foot-wall with the range 0.75~2.33D(D is tunnel diameter) distance from active ground fissure and the compressive parts are mainly located in the foot-wall with the range 3D distance from the fissure. When the settlement of hanging wall of ground fissure reaches 1cm(25cm in prototype), the tunnel bottom appear cavity in the hanging wall and cracks in the foot-wall. With the settlement development of the hanging wall of active ground fissure the vertical soil pressure on the top of tunnel greatly increases and reduces at the bottom of tunnel in the hanging wall.


Sign in / Sign up

Export Citation Format

Share Document