scholarly journals GROUND SUBSIDENCE MONITORING WITH MT-InSAR AND MECHANISM INVERSION OVER XI’AN, CHINA

Author(s):  
M. M. Peng ◽  
C. Y. Zhao ◽  
Q. Zhang ◽  
J. Zhang ◽  
Y. Y. Liu

The ancient Xi’an, China, has been suffering severe land subsidence and ground fissure hazards since the 1960s, which has affected the safety of Subways. Multi-sensor SAR data are conducted to monitor the latest complex ground deformation and its influence on subway line No.3 over Xi’an. Annual deformation rates have been retrieved to reveal the spatiotemporal evolution of ground subsidence in Xi’an city from 2013 to 2017. Meanwhile, the correlation between land subsidence and ground fissures are analyzed by retrieving the deformation differences in both sides of the fissures. Besides, the deformation along subway line No. 3 is analyzed, and the fast deformation section is quantitatively studied. Finally, a flat lying sill model with distributed contractions is implemented to model the InSAR deformation over YHZ subsidence center, which manifests that the ground deformation is mainly caused by groundwater withdrawal.

Author(s):  
F. Zhang ◽  
C. S. Yang ◽  
C. Y. Zhao ◽  
R. C. Liu

Yuncheng area is one of the most extensive distributions of ground fissures in Shanxi basin, especially in Yanhu District of Yuncheng, the disaster of ground fissures and ground subsidence are the most serious. According to previous studies, the development and distribution of the ground fissures in this area are mainly controlled by the underlying active faults. In order to provide a better understanding of the formation mechanism, the deformation of ground fissures and its surrounding environment should be taken into consideration. In this paper, PS-InSAR technology was employed to assess the time-series ground deformation of Yuncheng ground fissures and its surrounding area with X-band TerraSAR images from 2013 to 2015. The interaction between ground fissures activity and land subsidence, groundwater, precipitation and surrounding faults will be discussed.


2019 ◽  
Vol 11 (6) ◽  
pp. 664 ◽  
Author(s):  
Mimi Peng ◽  
Chaoying Zhao ◽  
Qin Zhang ◽  
Zhong Lu ◽  
Zhongsheng Li

The ancient city of Xi’an, China, has been suffering severe land subsidence and ground fissure hazards since the 1960s, mainly due to the over-withdrawal of groundwater and large-scale urban construction. This has threatened and will continue to threaten the stability of urban infrastructure, such as the construction and operation of high buildings and subway lines. It is necessary to map the spatiotemporal variations of land subsidence over Xi’an, and to analyze their causes and the correlation with underground water level changes and ground fissure deformation. Time series of land subsidence were observed with the interferometric synthetic aperture radar (InSAR) technique, using multi-sensor SAR datasets from 2012 to 2018. Four land subsidence rate maps over Xi’an city were retrieved from TerraSAR-X, ALOS/PALSAR2, and Sentinel-1 data, each with different tracks. The InSAR derived results were then cross-validated with three independent SAR data stacks, and calibrated with GPS and leveling observations. Next, the spatiotemporal evolutions of three main regional land subsidence zones were quantitatively analyzed in detail, and the surface deformation of the Xi’an subway network was spatially analyzed. Third, the correlations between land subsidence and ground water withdrawal, ground fissure deformation, landforms, and faults were intensively analyzed. Finally, a flat lying sill model with distributed contractions was implemented to model the InSAR deformation over one typical subsidence zone, which further suggested that the ground deformation was mainly caused by groundwater withdrawal. This systematic research can provide sound evidence to serve decision-making for land subsidence mitigation in Xi’an, and may also guide land subsidence research in other cities.


2020 ◽  
Vol 12 (22) ◽  
pp. 3756
Author(s):  
Wei Shi ◽  
Guan Chen ◽  
Xingmin Meng ◽  
Wanyu Jiang ◽  
Yan Chong ◽  
...  

Land subsidence is one of the major urban geological hazards, which seriously restricts the development of many cities in the world. As one of the major cities in China, Xi’an has also been experiencing a large area of land subsidence due to excessive exploitation of groundwater. Since the Heihe Water Transfer Project (HWTP) became fully operational in late 2003, the problem of subsidence has been restrained, but other issues, such as ground rebounds, have appeared, and the effect of the underground space utilization on land subsidence remains unsolved. The spatial-temporal pattern of land subsidence and rebound in Xi’an after HWTP and their possible cause have so far not been well understood. In this study, the evolutionary characteristics of land subsidence and rebound in Xi’an city from 2007–2019 was investigated using Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-SAR) technology to process the Advanced Land Observing Satellite (ALOS) and Sentinel-1A SAR datasets, and their cause and the correlation with groundwater level changes and the underground space utilization were discussed. We found that the land subsidence rate in the study area slowed from 2007–2019, and the subsidence area shrank and gradually developed into three relatively independent and isolated subsidence areas primarily. Significant local rebound deformation up to 22 mm/y commenced in the groundwater recharge region during 2015–2019. The magnitude of local rebound was dominated by the rise in groundwater level due to HWTP, whereas tectonic faults and ground fissures control the range of subsidence and the uplift area. The influence of building load on surface deformation became increasingly evident and primarily manifested by slowing the subsidence reduction trend. Additionally, land subsidence caused by the disturbances during the subway construction period was stronger than that in the operational stage. Future land subsidence in Xi’an is predicted to be alleviated overall, and the areas of rebound deformation will continue increasing for a limited time. However, uneven settlement range may extend to the Qujiang and Xixian New District due to the rapid urban construction. Our results could provide a scientific basis for land subsidence hazard mitigation, underground space planning, and groundwater management in Xi’an or similar regions where severe ground subsidence was induced by rapid urbanization.


2019 ◽  
Vol 11 (12) ◽  
pp. 1466 ◽  
Author(s):  
Mingliang Gao ◽  
Huili Gong ◽  
Xiaojuan Li ◽  
Beibei Chen ◽  
Chaofan Zhou ◽  
...  

Land subsidence is a global environmental geological hazard caused by natural or human activities. The high spatial resolution and continuous time coverage of interferometric synthetic aperture radar (InSAR) time series analysis techniques provide data and a basis for the development of methods for the investigation and evolution mechanism study of regional land subsidence. Beijing, the capital city of China, has suffered from land subsidence for decades since it was first recorded in the 1950s. It was reported that uneven ground subsidence and fractures have seriously affected the normal operation of the Beijing Capital International Airport (BCIA) in recent years before the overhaul of the middle runway in April 2017. In this study, InSAR time series analysis was successfully used to detect the uneven local subsidence and ground fissure activity that has been gradually increasing in BCIA since 2010. A multi-temporal InSAR (MT-InSAR) technique was performed on 63 TerraSAR-X/TanDem-X (TSX/TDX) images acquired between 2010 and 2017, then deformation rate maps and time series for the airport area were generated. Comparisons of deformation rate and displacement time series from InSAR and ground-leveling were carried out in order to evaluate the accuracy of the InSAR-derived measurements. After an integrated analysis of the distribution characteristics of land subsidence, previous research results, and geological data was carried out, we found and located an active ground fissure. Then main cause of the ground fissures was preliminarily discussed. Finally, it can be conducted that InSAR technology can be used to identify and monitor geological processes, such as land subsidence and ground fissure activities, and can provide a scientific approach to better explore and study the cause and formation mechanism of regional subsidence and ground fissures.


2019 ◽  
Vol 79 ◽  
pp. 02009
Author(s):  
Haigang Wang ◽  
Tongchun Qin ◽  
Haipeng Guo ◽  
Juyan Zhu ◽  
Yunlong Wang ◽  
...  

In all ground fissures in Beijing, Gaoliying Ground Fissure has characteristics of highly activity, and it cause serious damages on constructoins. With the distribution as well as the development of land subsidence and the change of the groundwater level, a series of work has been conducted to explain the mechanism of the formation of Gaoliying Ground Fissure. For example, field damage investigations and trench observations were used to define the affected distance of ground fissure; three-dimensional deformation was monitored to determine active characteristic of ground fissure. This paper points out that Gaoliying ground fissure is controlled by Huangzhuang-Gaoliying Fault, which mainly moves in the vertical direction. The rapid decrease of the ground water level greatly increases the development of ground fissure. The distance of damaged zones affected by ground fissure in the hanging-wall of the fault reaches 49.5m, and the distance of damaged zones in the footwall of the fault is 17.5 m. A suggested safety distance of type-one and type-two buildings is 100 m. For type-three buildings, the suggested safety distance is 80 m.


2013 ◽  
Vol 353-356 ◽  
pp. 333-336
Author(s):  
Chao Liu ◽  
Li Jun Su ◽  
Xing Qian Xu

The subsidence value in fissure site and no fissure site respectively is calculated when ground water is pumped. The relationship between ground fissures and ground subsidence is determined by calculation and then the cause of land subsidence is concluded. This study can solve the problem of ground subsidence in the construction of south section of Xian metro line 2 and it offers theoretic basis of prevention and treatment.


2020 ◽  
Author(s):  
Chuanguang Zhu ◽  
Wenhao Wu ◽  
Mahdi Motagh ◽  
Liya Zhang ◽  
Zongli Jiang ◽  
...  

Abstract. The Heze section of Rizhao-Lankao High-speed Railway (RLHR-HZ) has been under construction since 2018 and will be operative by the end of 2021. However, there is a concern that land subsidence in Heze region may affect the normal operation of RLHR-HZ. In this study, we investigate the contemporary ground deformation in the region between 2015 and 2019 by using more than 350 C-band interferograms constructed from two tracks of Sentine-1 data over the region. The Small Baselines Subset (SBAS) technique is adopted to compile the time series displacement. We find that the RLHR-HZ runs through two main subsidence areas: One is located east of Heze region with rates ranging from −4 cm/yr to −1 cm/yr, and another one is located in the coal field with rates ranging from −8 cm/yr to −2 cm/yr. A total length of 35 km of RLSR-HZ are affected by the two subsidence basins. Considering the previous investigation and the monthly precipitation, we infer that the subsidence bowl east of Heze region is due to massive extraction of deep groundwater. Close inspections of the relative locations between the second subsidence area and the underground mining reveals that the subsidence there is probably caused by the groundwater outflow and fault instability due to mining, rather than being directly caused by mining. The InSAR-derived ground subsidence implies that it's necessary to continue monitoring the ground deformation along RLSR-HZ.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Jin Liu ◽  
Yong Wang ◽  
Yi Lu ◽  
Jihong Wei ◽  
Debi Prasanna Kanungo

The monitoring of ground deformation is important for the prevention and control of geological disaster including land subsidence, ground fissure, surface collapse, and landslides. In this study, a distributed optical fiber sensing technique based on Brillouin Optical Time-Domain Analysis (BOTDA) was used to monitor the ground deformation. The principle behind the BOTDA is first introduced, and then laboratory calibration test and physical model test were carried out. Finally, BOTDA-based monitoring of ground fissure was carried out in a test site. Experimental results show that the distributed optical fiber can measure the soil strain during ground deformation process, and the strain curve responded to the soil compression and tension region clearly. During field test in Wuxi City, China, the ground fissures deformation area was monitored accurately and the trend of deformation can also be achieved to forecast and warn against the ground fissure hazards.


2020 ◽  
Vol 12 (22) ◽  
pp. 3788
Author(s):  
Yakun Han ◽  
Jingui Zou ◽  
Zhong Lu ◽  
Feifei Qu ◽  
Ya Kang ◽  
...  

Wuhan, the largest city in central China, has experienced rapid urban development leading to land subsidence as well as environmental concerns in recent years. Although a few studies have analyzed the land subsidence of Wuhan based on ALOS-1, Envisat, and Sentinel-1 datasets, the research on long-term land subsidence is still lacking. In this study, we employed multi-temporal InSAR to investigate and reveal the spatiotemporal evolution of land subsidence over Wuhan with ALOS-1, Envisat, and Sentinel-1 images from 2007–2010, 2008–2010, 2015–2019, respectively. The results detected by InSAR were cross-validated by two independent SAR datasets, and leveling observations were applied to the calibration of InSAR-derived measurements. The correlation coefficient between the leveling and InSAR has reached 0.89. The study detected six main land subsidence zones during the monitoring period, with the maximum land subsidence velocity of −46 mm/a during the 2015–2019 analysis. Both the magnitude and the extent of the land subsidence have reduced since 2017. The causes of land subsidence are discussed in terms of urban construction, Yangtze river water level changes, and subsurface water level changes. Our results provide insight for understanding the causes of land subsidence in Wuhan and serve as reference for city management for reducing the land subsidence in Wuhan and mitigating the potential hazards.


2019 ◽  
Vol 41 (4) ◽  
pp. 339-357
Author(s):  
Nguyen Duc Anh ◽  
Tran Quoc Cuong ◽  
Tran Van Anh ◽  
Hoang Anh The ◽  
Nguyen Trung Thanh ◽  
...  

SAR Interferometry (InSAR) is a technique to measure land subsidence and can build a subsidence map on a large spatial scale with high accuracy. The study presented the application of PSInSAR for determining the subsidence of the central area of Hanoi through Terrasar-X data set from 2010 to 2015, with 23 images. The result shows that some area has the high subsidence in the districts of Hanoi such as Hoang Mai, Ha Dong and the slow subsidence such as Dong Da, Hai Ba Trung with subsidence velocity is less than -10mm/year. Besides, the correlation between ground subsidence measured by PSInSAR and subsidence monitoring of building CC02 Van Quan in Ha Dong district for the same period was computed with a correlation coefficient (R2) of 0.94. The PSInSAR technique can detect and estimate subsidence phenomena effectively with X-band.1.


Sign in / Sign up

Export Citation Format

Share Document