scholarly journals Numerical simulation of the natural, forced and mixed convection in a tunnel with a flat track of sinusoidal shape and a roof opening

2019 ◽  
Vol 85 ◽  
pp. 02001
Author(s):  
Oumar Drame ◽  
Cheikh Mbow ◽  
Florin Bode ◽  
Samba Dia ◽  
Omar Ngor Thiam

In this work, we studied the mixed convection of the airflow in a tunnel open at both ends. The tunnel has a sinusoidal trace and the horizontal ceiling is provided with an opening in the center. The tunnel floor is uniformly heated. Although of interest for many industrial applications, the configuration of this study has been studied very little from an academic point of view. Coupled equations of Naiver-Stokes and energy are solved numerically by the finite volume method with the Boussinesq hypothesis. We analyzed the effect of the parameters that characterize heat transfer, and the flow structure. Several situations have been considered by varying the Richardson number (1.3610-3≤Ri≤2.17.104) for a Prandtl number Pr = 0.71.

2020 ◽  
Vol 45 (4) ◽  
pp. 373-383
Author(s):  
Nepal Chandra Roy ◽  
Sadia Siddiqa

AbstractA mathematical model for mixed convection flow of a nanofluid along a vertical wavy surface has been studied. Numerical results reveal the effects of the volume fraction of nanoparticles, the axial distribution, the Richardson number, and the amplitude/wavelength ratio on the heat transfer of Al2O3-water nanofluid. By increasing the volume fraction of nanoparticles, the local Nusselt number and the thermal boundary layer increases significantly. In case of \mathrm{Ri}=1.0, the inclusion of 2 % and 5 % nanoparticles in the pure fluid augments the local Nusselt number, measured at the axial position 6.0, by 6.6 % and 16.3 % for a flat plate and by 5.9 % and 14.5 %, and 5.4 % and 13.3 % for the wavy surfaces with an amplitude/wavelength ratio of 0.1 and 0.2, respectively. However, when the Richardson number is increased, the local Nusselt number is found to increase but the thermal boundary layer decreases. For small values of the amplitude/wavelength ratio, the two harmonics pattern of the energy field cannot be detected by the local Nusselt number curve, however the isotherms clearly demonstrate this characteristic. The pressure leads to the first harmonic, and the buoyancy, diffusion, and inertia forces produce the second harmonic.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1150 ◽  
Author(s):  
Taher Armaghani ◽  
Muneer Ismael ◽  
Ali Chamkha ◽  
Ioan Pop

This paper investigates the mixed convection and entropy generation of an Ag-water nanofluid in an L-shaped channel fixed at an inclination angle of 30° to the horizontal axis. An isothermal heat source was positioned in the middle of the right inclined wall of the channel while the other walls were kept adiabatic. The finite volume method was used for solving the problem’s governing equations. The numerical results were obtained for a range of pertinent parameters: Reynolds number, Richardson number, aspect ratio, and the nanoparticles volume fraction. These results were Re = 50–200; Ri = 0.1, 1, 10; AR = 0.5–0.8; and φ = 0.0–0.06, respectively. The results showed that both the Reynolds and the Richardson numbers enhanced the mean Nusselt number and minimized the rate of entropy generation. It was also found that when AR. increased, the mean Nusselt number was enhanced, and the rate of entropy generation decreased. The nanoparticles volume fraction was predicted to contribute to increasing both the mean Nusselt number and the rate of entropy generation.


2019 ◽  
Vol 30 (5) ◽  
pp. 2781-2807
Author(s):  
Davood Toghraie ◽  
Ehsan Shirani

Purpose The purpose of this paper is to investigate the mixed convection of a two-phase water–aluminum oxide nanofluid in a cavity under a uniform magnetic field. Design/methodology/approach The upper wall of the cavity is cold and the lower wall is warm. The effects of different values of Richardson number, Hartmann number, cavitation length and solid nanoparticles concentration on the flow and temperature field and heat transfer rate were evaluated. In this paper, the heat flux was assumed to be constant of 10 (W/m2) and the Reynolds number was assumed to be constant of 300 and the Hartmann number and the volume fraction of solid nanoparticles varied from 0 to 60 and 0 to 0.06, respectively. The Richardson number was considered to be 0.1, 1 and 5. Aspect ratios were 1, 1.5 and 2. Findings Comparison of the results of this paper with the results of the numerical and experimental studies of other researchers showed a good correlation. The results were presented in the form of velocity and temperature profiles, stream and isotherm lines and Nusselt numbers. The results showed that by increasing the Hartmann number, the heat transfer rate decreases. An increase from 0 to 20 in Hartmann number results in a 20 per cent decrease in Nusselt numbers, and by increasing the Hartmann number from 20 to 40, a 16 per cent decrease is observed in Nusselt number. Accordingly, it is inferred that by increasing the Hartmann number, the reduction in the Nusselt number is decreased. As the Richardson number increased, the heat transfer rate and, consequently, the Nusselt number increased. Therefore, an increase in the Richardson number results in an increase of the Nusselt number, that is, an increase in Richardson number from 0.1 to 1 and from 1 to 5 results in 37 and 47 per cent increase in Nusselt number, respectively. Originality/value Even though there have been numerous investigations conducted on convection in cavities under various configurations and boundary conditions, relatively few studies are conducted for the case of nanofluid mixed convection in square lid-driven cavity under the effect of magnetic field using two-phase model.


2017 ◽  
Vol 21 (2) ◽  
pp. 963-976 ◽  
Author(s):  
Wael El-Maghlany ◽  
Mohamed Teamah ◽  
A.E. Kabeel ◽  
Ahmed Hanafy

In this study, a numerical simulation of the thermal performance of two ribs mounted over a horizontal flat plate and cooled by Cu-water nanofluid is performed. The plate is heated and maintained at a constant temperature and cooled by mixed convection of laminar flow at a relatively low temperature. The top wall is considered as an adiabatic condition. The effects of related parameters such as Richardson number (0.01 ? Ri ? 10), the solid volume fraction (0.01 ? ? ? 0.06), the distance ratio between the two ribs (d/W = 5, 10, and 15), and the rib height ratio (b/W = 1, 2, and 3) on the ribs thermal performance are studied. The numerical simulation results indicate that the heat transfer rate is significantly affected by the distance and the rib height. The heat transfer rate is improved by increasing the nanoparticles volume fraction. The influence of the solid volume fraction with the increase of heat transfer is more noticeable for lower values of the Richardson number. The numerical results are summarized in the effect of pertinent parameters on the average Nusselt number with the assistance of both streamlines and isothermal ones. Throughout the study, the Grashof and Prandtl numbers, for pure water are kept constant at 103 and 6.2, respectively. The numerical work was displayed out using, an in-house computational fluid dynamic code written in FORTRAN, which discretizes non-dimensional forms of the governing equations using the finite volume method and solves the resulting system of equations using Gauss-Seidal method utilizing a tri diagonal matrix algorithm.


2021 ◽  
Vol 945 (1) ◽  
pp. 012058
Author(s):  
Sayshar Ram Nair ◽  
Cheen Sean Oon ◽  
Ming Kwang Tan ◽  
S.N. Kazi

Abstract Heat exchangers are important equipment with various industrial applications such as power plants, HVAC industry and chemical industries. Various fluids that are used as working fluid in the heat exchangers such as water, oil, and ethylene glycol. Researchers have conducted various studies and investigations to improve the heat exchanger be it from material or heat transfer point of view. There have been attempts to create mixtures with solid particles suspended. This invention had some drawbacks since the pressure drop was compromised, on top of the occurrence of sedimentation or even erosion, which incurs higher maintenance costs. A new class of colloidal suspension fluid that met the demands and characteristics of a heat exchanger was then created. This novel colloidal suspension mixture was then and now addressed as “nanofluid”. In this study, the usage of functionalized graphene nanoplatelet (GNP) nanofluids will be studied for its thermal conductivity within an annular conduit with angled fins, which encourage swirling flows. The simulation results for the chosen GNP nanofluid concentrations have shown an enhancement in thermal conductivity and heat transfer coefficient compared to the corresponding base fluid thermal properties. The data from this research is useful in industrial applications which involve heat exchangers with finned tubes.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Abdelkader Boutra ◽  
Karim Ragui ◽  
Nabila Labsi ◽  
Youb Khaled Benkahla

AbstractThis paper reports a numerical study on mixed convection within a square enclosure, filled with a mixture of water and Cu (or Ag) nanoparticles. It is assumed that the temperature difference driving the convection comes from the side moving walls, when both horizontal walls are kept insulated. In order to solve the general coupled equations, a code based on the finite volume method is used and it has been validated after comparison between the present results and those of the literature. To make clear the effect of the main parameters on fluid flow and heat transfer inside the enclosure, a wide range of the Richardson number, taken from 0.01 to 100, the nanoparticles volume fraction (0% to 10%), and the cavity inclination angle (0º to 180º) are investigated. The phenomenon is analyzed through streamlines and isotherm plots, with special attention to the Nusselt number.


Author(s):  
Abhipsit Kumar Singh ◽  
Nanda Kishore

Numerical results on laminar mixed convective heat transfer phenomenon between a confined circular cylinder and shear-thinning type nanofluids are presented. The cylinder is placed horizontally in a confined channel through which nanofluids flow vertically upward. The effect of buoyancy is same as the direction of the flow. Because of existence of mixed convection, governing continuity, momentum, and energy equations are simultaneously solved within the limitations of Boussinesq approximation. The ranges of parameters considered are: volume fraction of nanoparticles, ϕ = 0.005–0.045; Reynolds number, Re = 1–40; Richardson number, Ri = 0–40; and confinement ratio of circular cylinder, λ = 0.0625–0.5. Finally, the effects of these parameters on the streamlines, isotherm contours, individual and total drag coefficients, and local and average Nusselt numbers are thoroughly delineated. The individual and total drag coefficients decrease with the increasing both ϕ and Re; and/or with the decreasing both Ri and λ. The rate of heat transfer increases with the increasing Re, ϕ, Ri, and λ; however, at Re = 30–40, when ϕ > 0.005 and Ri < 2, the average Nusselt number decreases with the increasing Richardson number. Finally, correlations for the total drag coefficient and average Nusselt number are proposed as functions of pertinent dimensionless parameters on the basis of present numerical results.


Author(s):  
Najib Hdhiri ◽  
Brahim Ben Beya

Purpose The purpose of this study is to produce a numerical model capable of predicting the mixed convection flows in a rectangular cavity filled with a porous medium and to analyze the effects of several parameters on convective flow in porous media in a differentially heated enclosure. Design/methodology/approach The authors used the finite volume method. Findings The authors predicted and analyzed the effects of Richardson number, Darcy number, porosity values and Prandtl number in heat transfer and fluid flow. On other hand, the porosity and Richardson number values lead to reducing the heat transfer rate of mixed convection flow in a porous medium. Originality/value A comparison between Darcy–Brinkman–Forchheimer model and Darcy–Brinkman model is discussed and analyzed. The authors finally conclude that the Darcy–Brinkman model overestimates the heat transfer rate.


Author(s):  
M. M. Abo Elazm ◽  
A. I. Shahata ◽  
A. F. Elsafty ◽  
M. A. Teamah

Laminar mixed convection in a three-dimensional lid driven cavity is numerically investigated. The top lid of the cavity is moving rightwards with a constant speed at a cold temperature. The bottom wall is maintained at an isothermal hot temperature, while the other vertical walls of the cavity are assumed to be insulated. In this study the mass diffusion was not taken into account and the fluid used was air. The flow and heat transfer behavior is studied for various Richardson number ranging from 5 × 10−5 to 3 × 10−4 at a fixed Prandtl number of 0.71 through analyzing the local Nusselt number distribution at different sections inside the cavity. Lewis number Le is assumed to be unity and the buoyancy ratio parameter N is equal to zero. Computations were done using an in-house code based on a finite volume method. The results showed a good agreement with previous two dimensional studies, while the three dimensional study gives different results at different sections inside the cavity. It is observed that, the average Nusselt number “Av Nu” on top and bottom surfaces decreases for all sections inside the cavity with increasing Richardson number. A correlation was formulated for each section on both walls for “Av Nu” as a function of “Ri” with a maximum error of 7.3%.


Sign in / Sign up

Export Citation Format

Share Document