scholarly journals Torrefaction of oat straw to use as solid biofuel, an additive to organic fertilizers for agriculture purposes and activated carbon – TGA analysis, kinetics

2020 ◽  
Vol 154 ◽  
pp. 02004 ◽  
Author(s):  
Szymon Szufa ◽  
Maciej Dzikuć ◽  
Łukasz Adrian ◽  
Piotr Piersa ◽  
Zdzisława Romanowska-Duda ◽  
...  

In this paper authors present research results which are the optimum parameters of the torrefaction process using straw from oats and maize. The most important parameters for the torrefaction process are temperature and residence time. Both parameters are essential to designing and construction of industrial biomass torrefaction installations. Energy crops and waste coming from agricultural production have the most promising perspective from all kind of renewable energy sources in Poland. Currently, intensive studies on the process of biomass torrefaction are being carried out. In this experimental investigation, authors examined the torrefaction process of two types of agriculture biomass, such as: oats, maize. The main overarching objective of the experimental studies described below is the development of various biochar as an additive to agricultural fertilizers resulting from the conversion of biomass from agriculture residues – straw from oats and maize. The last of enumerated biomasses is treated through different conversion processes such as: drying, torrefaction to homogenize their physical and chemical properties. Among many of its areas, it is extremely important to optimize the production of biomass energy plants and its refinement (in the torrefaction process), which will improve the balance and profitability of energy production from RES, and reduce the logistics and storage costs of this fuel and improve the efficiency of biomass combustion process. When implementing new technologies indicated in this work and optimizing the harvesting of plant biomass, the negative impact on the environment caused by stored municipal waste can be reduced. This biomass torrefaction process temperature and residence time were necessary for the design and construction of semi-pilot scale biomass torrefaction installations with dryer and torrefaction reactor to perform a continuous biomass torrefaction process using superheated steam

2012 ◽  
Vol 11 (9) ◽  
pp. 1555-1560 ◽  
Author(s):  
Ionel Pisa ◽  
Gheorghe Lazaroiu ◽  
Corina Radulescu ◽  
Lucian Mihaescu

2019 ◽  
Vol 19 (4) ◽  
pp. 993
Author(s):  
Rahsya Nur Udzaifa Abdul Rahman ◽  
Mazni Ismail ◽  
Ruwaida Abdul Rasid ◽  
Noor Ida Amalina Ahamad Nordin

Food waste (FW) represents a major component of municipal solid waste (MSW) in Malaysia which causes negative impact due to poor waste management. One of a promising strategy to reduce the FW is to convert the FW to energy sources through thermal pre-treatment process which known as torrefaction. The aim of this study is to investigate the improvement of chemical properties and energy potential of the torrefied FW. The torrefaction of FW was conducted using tubular reactor to evaluate the influence of temperature (220 to 260°C) and residence time (15 to 60 min) on the quality of torrefied FW. The quality of torrefied FW were evaluated using ultimate analysis, proximate analysis, mass yield, energy yield and higher heating value (HHV). From ultimate analysis, the carbon, C was increased, however the hydrogen, H and oxygen, O decreased across the torrefaction temperature and residence time. This lead to the increasing of HHV with the increasing of temperature and time. The HHV of the dried FW was improved from 19.15 to 23.9 MJ/kg after being torrefied at 260°C for 60 min. The HHV indicated that FW has the potential to be utilized as an energy source.


2015 ◽  
Vol 9 (1) ◽  
pp. 55-62
Author(s):  
János Szendrei ◽  
Edit Szűcs ◽  
Gábor Grasselli

The most sustainable energy is the energy not used. Best way to (not) use energy is the proper design of a facility or an energy consuming system. The remaining energy needs have to be covered with energy utilisation of waste materials, renewable energy sources and, until the previous solutions are not sufficient to satisfy the energy demands, the last is the use of conventional fossil and nuclear energy sources. In terms of renewable energy, biomass has an important role today. However, there is a difference between available inputs and utilisation when considering biomass energy possibilities in rural and urban context. This paper suggests biomass energy possibilities that are recommendable in rural context: possibilities of solid biomass combustion, of liquid biofuels and of anaerobe digestion. Also important are possibilities of solid biomass combustion and wet biomass digestion for urban energy production, although with some remarks on system considerations of urban biomass. Most advanced solutions for sustainable management of biomass energy include circular systems, both in rural and urban context, as recommended.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3398 ◽  
Author(s):  
Nikola Bilandžija ◽  
Tajana Krička ◽  
Ana Matin ◽  
Josip Leto ◽  
Mateja Grubor

Biomass obtained from cultivated energy crops is one of the raw materials with the highest potential in renewable energy production. Although such biomass can be used in production of lignocellulose bioethanol, it is currently mostly used as solid fuel for generating heat and/or electric energy via combustion processes. Calorific values, proximate and ultimate analysis, cell structure and micro- and macro-elements data are considered as basic parameters in the valorization of fuel properties during biomass combustion processes. Energy crops are cultivated with the aim to produce the largest possible quantity of biomass with minimal agro-technical inputs. One of these crops is Sida hermaphrodita (L.) Rusby. Given the fact that the chemical composition of biomass is influenced by a number of agro-ecological and agro-technical factors, the aim of this work was to determine the fuel properties of Sida hermaphrodita biomass obtained from three different harvest seasons (autumn, winter and spring) and cultivated in the area of the Republic of Croatia. On the basis of these investigations it was possible to conclude that harvest delaying towards spring season had a positive impact on suitability of using biomass of Sida hermaphrodita in the combustion process, which primarily means significant lowering the contents of moisture (18.64%), ash (1.94%), and nitrogen (0.65%), but also means increasing the contents of fixed carbon (6.21%) and lignin (25.45%).


Author(s):  
Ēriks Kronbergs

Substantial increases in global energy consumption and depletion o f fossil energy resources demand for development o f alternative energy resources. The more significant part (74%) of renewable energy sources has been planned for biomass energy in European Union. Substitution of fossil feedstocks for energy and materials by biomass is important measure for GHG emission mitigation. Development o f biodegradable polymers, construction materials and organic fertilizers from biomass let us challenge economy to a more sustainable way.Naturally biomass is material of low density therefore new mobile equipment and technologies for biomass communition and densification have to be worked out. Compacted biomass has higher volumetric energy density and can be easier transported and stored than natural biomass.Wheat straw biomass densification experiments have been carried out. Chopped straw with moisture content less 10% has been used for densification. Fine chopping significantly influence compacting density and is more preferable as heating. Cold compacting of fine chopped wheat stalk material with addition o f molasses more than 9% and sapropel more than 18% provide density lg/cm3 without any heating. The same density (Ig/cm3) has been obtained in compacting o f straw and peat composition. These results are useful for briquetting technology design.


2020 ◽  
Author(s):  
Chaimaa Hadey ◽  
Allouch Malika ◽  
Alami Mohammed ◽  
Boukhlifi Fatima

Abstract Peanut shells (PS) and sugar canes (SC) constitute an attractive and an energetic biomass source in Morocco since they are renewable, abundant and available. this work seeks to study the thermal decomposition of these biomass samples and their derived solid biofuel under oxidative atmosphere, and it also attempts to determine their kinetic and thermodynamic combustion parameters . The solid biofuel samples were produced by slow pyrolysis at a temperature of 400°C. Based on the TGA results, the biomass combustion process goes through three stages which are the evaporation of moisture, devolatilization and char formation. For the biochar, it takes two steps that corresponds to the evacuation of water and to the coal combustion. Kinetic parameters of each step are evaluated using Coats-Redfern method, and the thermodynamic parameters are calculated. The results have shown that biochar is less reactive than its original biomass, and that the biomass samples are the most reactive ones in the coal oxidation stage. We have also found that the biomass samples present a different combustion process. These results are useful for the configuration and the design of feasible systems for the conversion of this biomass into energy.


2013 ◽  
Vol 13 (3) ◽  
pp. 266-276

Environmental, economic and strategic reasons are behind the rapid impulse in the deployment of renewable energy sources that is taking place around the world. In addition to overcoming economic and commercial barriers, meeting the ambitious objectives set by most countries in this field will require the development of novel technologies capable of maximising the energy potential of different renewable sources at an acceptable cost. The use of solar radiation and biomass for power generation is growing rapidly, particularly in areas of the globe where these resources are plentiful, like Mediterranean countries. However, solar energy plants necessarily suffer from the intermittency of day/night cycles and also from reduced irradiation periods (winter, cloudy days, short transients). Biomass power plants have to confront the logistic problems associated with the continuous supply of very large amounts of a relatively scarce and seasonal fuel. Hybrid systems may provide the solution to these limitations, maximising the energy potential of these resources, increasing process efficiency, providing greater security of supply and reducing overall costs. This work provides a practical introduction to the production of electricity from conventional Concentrating Solar Power (CSP) and biomass power plants, which is used as the basis to evaluate the technical and economic benefits associated with hybrid CSP-biomass energy systems. The paper initially analyses alternative configurations for a 10 MWe hybrid CSP- biomass combustion power plant. The Solar Advisor Model (SAM) was used to determine the contribution of the solar field using quasi-steady generation conditions. The contribution of the biomass and gas boiler to the power plant was estimated considering the available radiation throughout the year. An economic assessment of a 10 MWe power plant based on conventional CSP, biomass combustion and hybrid technology is calculated. The results show that investment costs for hybrid CSP- biomass power plants are higher than for conventional CSP and biomass combustion plants alone. However, owing to the shared use of some of the equipment, this value is significantly lower (24% saving) than a simple addition of the investment costs associated with the two standard technologies. In contrast, effective operating hours and, therefore, overall energy generation, are significantly higher than in conventional CSP (2.77 times higher) and avoids the need for highly expensive heat storage system. Owing to the lower biomass requirements, hybrid plants may have larger capacities than standard biomass combustion plants, which implies higher energy efficiencies and a reduced risk associated with biomass supply. Universidad Politécnica de Madrid (UPM) is currently collaborating with a consortium of private companies in the development of a first commercial hybrid CSP-biomass combustion power plant that is expected to start operating in 2012.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5837
Author(s):  
Przemysław Motyl ◽  
Danuta Król ◽  
Sławomir Poskrobko ◽  
Marek Juszczak

The paper presents the results of numerical and experimental studies aimed at developing a new design of a 10 kW low-emission heating boiler fired with wood pellets. The boiler is to meet stringent requirements in terms of efficiency (η > 90%) and emissions per 10% O2: CO < 500 mg/Nm3, NOx ≤ 200 mg/Nm3, and dust ≤ 20 mg/Nm3; these emission restrictions are as prescribed in the applicable ECODESIGN Directive in the European Union countries. An innovative aspect of the boiler structure (not yet present in domestic boilers) is the circular flow of exhaust gases around the centrally placed combustion chamber. The use of such a solution ensures high-efficiency, low-emission combustion and meeting the requirements of ECODESIGN. The results of the numerical calculations were verified and confirmed experimentally, obtaining average emission values of the limited gases CO = 91 mg/Nm3, and NOx = 197 mg/Nm3. The temperature measured in the furnace is 450–500 °C and in the flue it was 157–197 °C. The determined boiler efficiency was 92%. Numerical calculations were made with the use of an advanced CFD (Computational Fluid Dynamics) workshop in the form of the Ansys programming and a computing environment with the dominant participation of the Fluent module. It was shown that the results obtained in both experiments are sufficiently convergent.


2021 ◽  
Vol 58 (2) ◽  
pp. 6-21
Author(s):  
Anna Rabajczyk ◽  
Grzegorz Rabajczyk

Aim: The article presents information on the issue of CO2 emission (called greenhouse gas) from the energy sector, along with tools enabling the deter- mination of CO2 emissivity used to manage this process and the directions of actions taken to minimize the negative impact on the climate. Introduction: CO2 is one of the substances essential for the functioning of life on Earth. On one hand, it is an important element of the carbon cycle in nature, being the basis for the synthesis of carbohydrates. On the other hand, it belongs to the group of greenhouse gases responsible for the climate change – and for this reason, it must be subject to constant control. Due to this fact, appropriate measures are taken, including changes in law, in the scope of emission, as well as the introduction of modern technological solutions aimed at monitoring and reducing CO2 emission. Activities undertaken in the area of energy, the branch of the economy generating the largest amounts of anthropogenic CO2, accounting for 41% of global emissions of this gas, are of significant importance [1]. The developed tools, allowing to calculate the amount of carbon dioxide emissions, expressed by emission indicators, allow for the assessment of the activities undertaken both in terms of ecology and economy. Methodology: The article was prepared on the basis of a review of selected literature, and reports as well as applicable legal requirements in the field of the discussed subject. Conclusions: The implemented measures aimed at the application of emission indicators in the area of energy allowed for the definition of forecasts and the determination of the directions of activities, in order to reduce the emission of CO2. The gradual implementation of new technological solutions, enabling energy production based on biomass or other renewable energy sources, allows for the reduction of the emission of this gas. However, given the constantly increasing energy demand, it is a slow process which is not sufficient to stop the observed changes. Therefore, it is necessary to take further steps, to develop more reliable and homogeneous tools that would make it possible to compare the results regardless of the place of emission or the type of fuel used. However, it should be noted that it is necessary to cover all stages of the construction and operation of the energy sector with the measures mentioned above, which generate CO2 emission, and not only the combustion process itself. Keywords: emissivity, CO2, power engineering, climate change Type of article: review article


Author(s):  
B.S. Soroka ◽  
V.V. Horupa

Natural gas NG consumption in industry and energy of Ukraine, in recent years falls down as a result of the crisis in the country’s economy, to a certain extent due to the introduction of renewable energy sources along with alternative technologies, while in the utility sector the consumption of fuel gas flow rate enhancing because of an increase the number of consumers. The natural gas is mostly using by domestic purpose for heating of premises and for cooking. These items of the gas utilization in Ukraine are already exceeding the NG consumption in industry. Cooking is proceeding directly in the living quarters, those usually do not meet the requirements of the Ukrainian norms DBN for the ventilation procedures. NG use in household gas stoves is of great importance from the standpoint of controlling the emissions of harmful components of combustion products along with maintenance the satisfactory energy efficiency characteristics of NG using. The main environment pollutants when burning the natural gas in gas stoves are including the nitrogen oxides NOx (to a greater extent — highly toxic NO2 component), carbon oxide CO, formaldehyde CH2O as well as hydrocarbons (unburned UHC and polyaromatic PAH). An overview of environmental documents to control CO and NOx emissions in comparison with the proper norms by USA, EU, Russian Federation, Australia and China, has been completed. The modern designs of the burners for gas stoves are considered along with defining the main characteristics: heat power, the natural gas flow rate, diameter of gas orifice, diameter and spacing the firing openings and other parameters. The modern physical and chemical principles of gas combustion by means of atmospheric ejection burners of gas cookers have been analyzed from the standpoints of combustion process stabilization and of ensuring the stability of flares. Among the factors of the firing process destabilization within the framework of analysis above mentioned, the following forms of unstable combustion/flame unstabilities have been considered: flashback, blow out or flame lifting, and the appearance of flame yellow tips. Bibl. 37, Fig. 11, Tab. 7.


Sign in / Sign up

Export Citation Format

Share Document