scholarly journals Geocryological conditions triggering thermokarst processes in Central Yakutia

2020 ◽  
Vol 163 ◽  
pp. 02007
Author(s):  
Nataliia Nesterova ◽  
Olga Makarieva ◽  
Alexander Fedorov ◽  
Andrey Shikhov

The use of the Central Yakutia Landsat images revealed an increase in the area of thermokarst lakes by two times for the Suola and Taatta River basins and a quarter times in the Tanda River basin during the period 2000-2019. The abrupt increase in the lakes area is due to shortterm periods of abnormal rising in the active layer temperature, which are caused by high values of snow water equivalent and total annual precipitation. Increased soil moisture and the warming effect of snow cover led to the decrease of the intensity of soil freezing and increase of the temperature of the ground top layer. The combination of these factors triggered the activation of thermokarst processes, which led to a sharp, more than 1.5 times, increase of the thermokarst lakes area in 2007-2008.

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 404
Author(s):  
Tong Heng ◽  
Xinlin He ◽  
Lili Yang ◽  
Jiawen Yu ◽  
Yulin Yang ◽  
...  

To reveal the spatiotemporal patterns of the asymmetry in the Tianshan mountains’ climatic warming, in this study, we analyzed climate and MODIS snow cover data (2001–2019). The change trends of asymmetrical warming, snow depth (SD), snow coverage percentage (SCP), snow cover days (SCD) and snow water equivalent (SWE) in the Tianshan mountains were quantitatively determined, and the influence of asymmetrical warming on the snow cover activity of the Tianshan mountains were discussed. The results showed that the nighttime warming rate (0.10 °C per decade) was greater than the daytime, and that the asymmetrical warming trend may accelerate in the future. The SCP of Tianshan mountain has reduced by 0.9%. This means that for each 0.1 °C increase in temperature, the area of snow cover will reduce by 5.9 km2. About 60% of the region’s daytime warming was positively related to SD and SWE, and about 48% of the region’s nighttime warming was negatively related to SD and SWE. Temperature increases were concentrated mainly in the Pamir Plateau southwest of Tianshan at high altitudes and in the Turpan and Hami basins in the east. In the future, the western and eastern mountainous areas of the Tianshan will continue to show a warming trend, while the central mountainous areas of the Tianshan mountains will mainly show a cooling trend.


1987 ◽  
Vol 9 ◽  
pp. 39-44 ◽  
Author(s):  
A.T.C. Chang ◽  
J.L. Foster ◽  
D.K. Hall

Snow covers about 40 million km2of the land area of the Northern Hemisphere during the winter season. The accumulation and depletion of snow is dynamically coupled with global hydrological and climatological processes. Snow covered area and snow water equivalent are two essential measurements. Snow cover maps are produced routinely by the National Environmental Satellite Data and Information Service of the National Oceanic and Atmospheric Administration (NOAA/NESDIS) and by the US Air Force Global Weather Center (USAFGWC). The snow covered area reported by these two groups sometimes differs by several million km2, Preliminary analysis is performed to evaluate the accuracy of these products.Microwave radiation penetrating through clouds and snowpacks could provide depth and water equivalent information about snow fields. Based on theoretical calculations, snow covered area and snow water equivalent retrieval algorithms have been developed. Snow cover maps for the Northern Hemisphere have been derived from Nimbus-7 SMMR data for a period of six years (1978–1984). Intercomparisons of SMMR, NOAA/NESDIS and USAFGWC snow maps have been conducted to evaluate and assess the accuracy of SMMR derived snow maps. The total snow covered area derived from SMMR is usually about 10% less than the other two products. This is because passive microwave sensors cannot detect shallow, dry snow which is less than 5 cm in depth. The major geographic regions in which the differences among these three products are the greatest are in central Asia and western China. Future study is required to determine the absolute accuracy of each product.Preliminary snow water equivalent maps have also been produced. Comparisons are made between retrieved snow water equivalent over large area and available snow depth measurements. The results of the comparisons are good for uniform snow covered areas, such as the Canadian high plains and the Russian steppes. Heavily forested and mountainous areas tend to mask out the microwave snow signatures and thus comparisons with measured water equivalent are poorer in those areas.


2013 ◽  
Vol 17 (7) ◽  
pp. 2781-2796 ◽  
Author(s):  
S. Shukla ◽  
J. Sheffield ◽  
E. F. Wood ◽  
D. P. Lettenmaier

Abstract. Global seasonal hydrologic prediction is crucial to mitigating the impacts of droughts and floods, especially in the developing world. Hydrologic predictability at seasonal lead times (i.e., 1–6 months) comes from knowledge of initial hydrologic conditions (IHCs) and seasonal climate forecast skill (FS). In this study we quantify the contributions of two primary components of IHCs – soil moisture and snow water content – and FS (of precipitation and temperature) to seasonal hydrologic predictability globally on a relative basis throughout the year. We do so by conducting two model-based experiments using the variable infiltration capacity (VIC) macroscale hydrology model, one based on ensemble streamflow prediction (ESP) and another based on Reverse-ESP (Rev-ESP), both for a 47 yr re-forecast period (1961–2007). We compare cumulative runoff (CR), soil moisture (SM) and snow water equivalent (SWE) forecasts from each experiment with a VIC model-based reference data set (generated using observed atmospheric forcings) and estimate the ratio of root mean square error (RMSE) of both experiments for each forecast initialization date and lead time, to determine the relative contribution of IHCs and FS to the seasonal hydrologic predictability. We find that in general, the contributions of IHCs to seasonal hydrologic predictability is highest in the arid and snow-dominated climate (high latitude) regions of the Northern Hemisphere during forecast periods starting on 1 January and 1 October. In mid-latitude regions, such as the Western US, the influence of IHCs is greatest during the forecast period starting on 1 April. In the arid and warm temperate dry winter regions of the Southern Hemisphere, the IHCs dominate during forecast periods starting on 1 April and 1 July. In equatorial humid and monsoonal climate regions, the contribution of FS is generally higher than IHCs through most of the year. Based on our findings, we argue that despite the limited FS (mainly for precipitation) better estimates of the IHCs could lead to improvement in the current level of seasonal hydrologic forecast skill over many regions of the globe at least during some parts of the year.


2017 ◽  
Vol 11 (4) ◽  
pp. 1647-1664 ◽  
Author(s):  
Emmy E. Stigter ◽  
Niko Wanders ◽  
Tuomo M. Saloranta ◽  
Joseph M. Shea ◽  
Marc F. P. Bierkens ◽  
...  

Abstract. Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water equivalent (SWE). Therefore, in this study remotely sensed snow cover was combined with in situ observations and a modified version of the seNorge snow model to estimate (climate sensitivity of) SWE and snowmelt runoff in the Langtang catchment in Nepal. Snow cover data from Landsat 8 and the MOD10A2 snow cover product were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an ensemble Kalman filter (EnKF). Independent validations of simulated snow depth and snow cover with observations show improvement after data assimilation compared to simulations without data assimilation. The approach of modeling snow depth in a Kalman filter framework allows for data-constrained estimation of snow depth rather than snow cover alone, and this has great potential for future studies in complex terrain, especially in the Himalayas. Climate sensitivity tests with the optimized snow model revealed that snowmelt runoff increases in winter and the early melt season (December to May) and decreases during the late melt season (June to September) as a result of the earlier onset of snowmelt due to increasing temperature. At high elevation a decrease in SWE due to higher air temperature is (partly) compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature.


1987 ◽  
Vol 9 ◽  
pp. 39-44 ◽  
Author(s):  
A.T.C. Chang ◽  
J.L. Foster ◽  
D.K. Hall

Snow covers about 40 million km2 of the land area of the Northern Hemisphere during the winter season. The accumulation and depletion of snow is dynamically coupled with global hydrological and climatological processes. Snow covered area and snow water equivalent are two essential measurements. Snow cover maps are produced routinely by the National Environmental Satellite Data and Information Service of the National Oceanic and Atmospheric Administration (NOAA/NESDIS) and by the US Air Force Global Weather Center (USAFGWC). The snow covered area reported by these two groups sometimes differs by several million km2, Preliminary analysis is performed to evaluate the accuracy of these products.Microwave radiation penetrating through clouds and snowpacks could provide depth and water equivalent information about snow fields. Based on theoretical calculations, snow covered area and snow water equivalent retrieval algorithms have been developed. Snow cover maps for the Northern Hemisphere have been derived from Nimbus-7 SMMR data for a period of six years (1978–1984). Intercomparisons of SMMR, NOAA/NESDIS and USAFGWC snow maps have been conducted to evaluate and assess the accuracy of SMMR derived snow maps. The total snow covered area derived from SMMR is usually about 10% less than the other two products. This is because passive microwave sensors cannot detect shallow, dry snow which is less than 5 cm in depth. The major geographic regions in which the differences among these three products are the greatest are in central Asia and western China. Future study is required to determine the absolute accuracy of each product.Preliminary snow water equivalent maps have also been produced. Comparisons are made between retrieved snow water equivalent over large area and available snow depth measurements. The results of the comparisons are good for uniform snow covered areas, such as the Canadian high plains and the Russian steppes. Heavily forested and mountainous areas tend to mask out the microwave snow signatures and thus comparisons with measured water equivalent are poorer in those areas.


2021 ◽  
Vol 11 (18) ◽  
pp. 8365
Author(s):  
Liming Gao ◽  
Lele Zhang ◽  
Yongping Shen ◽  
Yaonan Zhang ◽  
Minghao Ai ◽  
...  

Accurate simulation of snow cover process is of great significance to the study of climate change and the water cycle. In our study, the China Meteorological Forcing Dataset (CMFD) and ERA-Interim were used as driving data to simulate the dynamic changes in snow depth and snow water equivalent (SWE) in the Irtysh River Basin from 2000 to 2018 using the Noah-MP land surface model, and the simulation results were compared with the gridded dataset of snow depth at Chinese meteorological stations (GDSD), the long-term series of daily snow depth dataset in China (LSD), and China’s daily snow depth and snow water equivalent products (CSS). Before the simulation, we compared the combinations of four parameterizations schemes of Noah-MP model at the Kuwei site. The results show that the rainfall and snowfall (SNF) scheme mainly affects the snow accumulation process, while the surface layer drag coefficient (SFC), snow/soil temperature time (STC), and snow surface albedo (ALB) schemes mainly affect the melting process. The effect of STC on the simulation results was much higher than the other three schemes; when STC uses a fully implicit scheme, the error of simulated snow depth and snow water equivalent is much greater than that of a semi-implicit scheme. At the basin scale, the accuracy of snow depth modeled by using CMFD and ERA-Interim is higher than LSD and CSS snow depth based on microwave remote sensing. In years with high snow cover, LSD and CSS snow depth data are seriously underestimated. According to the results of model simulation, it is concluded that the snow depth and snow water equivalent in the north of the basin are higher than those in the south. The average snow depth, snow water equivalent, snow days, and the start time of snow accumulation (STSA) in the basin did not change significantly during the study period, but the end time of snow melting was significantly advanced.


2014 ◽  
Vol 11 (11) ◽  
pp. 12531-12571 ◽  
Author(s):  
S. Gascoin ◽  
O. Hagolle ◽  
M. Huc ◽  
L. Jarlan ◽  
J.-F. Dejoux ◽  
...  

Abstract. The seasonal snow in the Pyrenees is critical for hydropower production, crop irrigation and tourism in France, Spain and Andorra. Complementary to in situ observations, satellite remote sensing is useful to monitor the effect of climate on the snow dynamics. The MODIS daily snow products (Terra/MOD10A1 and Aqua/MYD10A1) are widely used to generate snow cover climatologies, yet it is preferable to assess their accuracies prior to their use. Here, we use both in situ snow observations and remote sensing data to evaluate the MODIS snow products in the Pyrenees. First, we compare the MODIS products to in situ snow depth (SD) and snow water equivalent (SWE) measurements. We estimate the values of the SWE and SD best detection thresholds to 40 mm water equivalent (we) and 105 mm respectively, for both MOD10A1 and MYD10A1. Kappa coefficients are within 0.74 and 0.92 depending on the product and the variable. Then, a set of Landsat images is used to validate MOD10A1 and MYD10A1 for 157 dates between 2002 and 2010. The resulting accuracies are 97% (κ = 0.85) for MOD10A1 and 96% (κ = 0.81) for MYD10A1, which indicates a good agreement between both datasets. The effect of vegetation on the results is analyzed by filtering the forested areas using a land cover map. As expected, the accuracies decreases over the forests but the agreement remains acceptable (MOD10A1: 96%, κ = 0.77; MYD10A1: 95%, κ = 0.67). We conclude that MODIS snow products have a sufficient accuracy for hydroclimate studies at the scale of the Pyrenees range. Using a gapfilling algorithm we generate a consistent snow cover climatology, which allows us to compute the mean monthly snow cover duration per elevation band. We finally analyze the snow patterns for the atypical winter 2011–2012. Snow cover duration anomalies reveal a deficient snowpack on the Spanish side of the Pyrenees, which seems to have caused a drop in the national hydropower production.


2021 ◽  
pp. 117-127
Author(s):  
M. V. GEORGIEVSKY ◽  
◽  
N. I. GOROSHKOVA ◽  
V. A. KHOMYAKOVA ◽  
A. V. STRIZHENOK

The article presents an analysis of the impact of climate change on the main characteristics of ice phenomena, snow cover and the water regime in the Small Northern Dvina River basin occurring in recent decades. Recently, a significant climate warming has been observed in the basin. As a result, winters are getting warmer and shorter. There is also an increase in winter precipitation and the number of thaws. Climate warming directly affects the duration of snow cover, which decreases both due to the later formation and to the earlier destruction of snow. There is also a slight downward trend in the annual values of the maximum snow water equivalent, which may be the result of an increase in the number of thaws in winter, when a part of the snow cover melts contributing to the winter river runoff. The analysis of the main characteristics of the ice cover on the rivers of the studied basin shows that their changes are similarly to changes in the snow cover: there is a reduction in the freeze-up period due to its later formation and earlier complete destruction. The maximum ice thickness on the rivers of the basin also tends to decrease. There is an increase in winter and a decrease in spring runoff. Predictive estimates of changes in the observed trends in the future are presented in the fi nal part of the article based on the CMIP5 project data.


2020 ◽  
Vol 240 ◽  
pp. 111668 ◽  
Author(s):  
Eunsang Cho ◽  
Jennifer M. Jacobs ◽  
Ronny Schroeder ◽  
Samuel E. Tuttle ◽  
Carrie Olheiser

2017 ◽  
Vol 18 (5) ◽  
pp. 1205-1225 ◽  
Author(s):  
Diana Verseghy ◽  
Ross Brown ◽  
Libo Wang

Abstract The Canadian Land Surface Scheme (CLASS), version 3.6.1, was run offline for the period 1990–2011 over a domain centered on eastern Canada, driven by atmospheric forcing data dynamically downscaled from ERA-Interim using the Canadian Regional Climate Model. The precipitation inputs were adjusted to replicate the monthly average precipitation reported in the CRU observational database. The simulated fractional snow cover and the surface albedo were evaluated using NOAA Interactive Multisensor Snow and Ice Mapping System and MODIS data, and the snow water equivalent was evaluated using CMC, Global Snow Monitoring for Climate Research (GlobSnow), and Hydro-Québec products. The modeled fractional snow cover agreed well with the observational estimates. The albedo of snow-covered areas showed a bias of up to −0.15 in boreal forest regions, owing to neglect of subgrid-scale lakes in the simulation. In June, conversely, there was a positive albedo bias in the remaining snow-covered areas, likely caused by neglect of impurities in the snow. The validation of the snow water equivalent was complicated by the fact that the three observation-based datasets differed widely. Also, the downward adjustment of the forcing precipitation clearly resulted in a low snow bias in some regions. However, where the density of the observations was high, the CLASS snow model was deemed to have performed well. Sensitivity tests confirmed the satisfactory behavior of the current parameterizations of snow thermal conductivity, snow albedo refreshment threshold, and limiting snow depth and underlined the importance of snow interception by vegetation. Overall, the study demonstrated the necessity of using a wide variety of observation-based datasets for model validation.


Sign in / Sign up

Export Citation Format

Share Document