scholarly journals Experimental analysis of magnetic field effects on compressor energy saving cooling system

2020 ◽  
Vol 170 ◽  
pp. 01020
Author(s):  
Rakesh Kumar Sidheshware ◽  
S Ganesan ◽  
Virendra K Bhojwani

A research on different refrigerants with and without influence of the magnetic field is provided in this paper. The magnetic field degree viz is four gauss. The condenser exit row was 3000, 6000, 9000 and 12000 gauss. Magnetic fields at condenser exit lines are found to reduce the consumption of the compressor energy. Through applying magnet fields on R134a, compressor energy savings was observed up to 1.35%, 6.23%, 5.40% and 4.19%, respectively, in gauss levels of 3000, 6000, 9000 and 12000, while R152a savings in energy levels were up 13.10%, 15.59% and 25.86% and R407a saving in power up to 7.3%, 9.19%, 13.05% and 12.40%. The coolant R152a saves energy in contrast to other coolant compressors. As the magnetic field strength increases, a vapor refrigeration system decreases the energy consumption of the compressor.

2010 ◽  
Vol 10 ◽  
pp. 121-130 ◽  
Author(s):  
Hojjatollah K. Salehani ◽  
Mahdi Esmaeilzadeh ◽  
Khosrow Shakouri

In this paper, the electronic eigenstates and energy spectra of a two-dimensional system formed by three concentric, coupled, semiconductor quantum rings with a perpendicular magnetic field in the presence and the absence of a single ionized hydrogenic donor impurity are studied. It is found that the magnetic field localizes the electron wave function in the inner rings. The effects of hydrogenic donor on the electronic structure of concentric triple quantum rings are investigated in the both on- and off-center configurations. It is shown that as the donor moves away from the center of the system, the ground state energy decreases monotonically, the degeneracy is lifted and the gap between the energy levels increases. Also, the binding energy of donor impurity increases with increasing magnetic field.


1994 ◽  
Vol 13 (3-4) ◽  
pp. 223-239 ◽  
Author(s):  
Haruo Abe

The chemiluminescence intensity in the low pressure diffusion flame of the CS2 + O/N2 system was found to be considerably affected by external magnetic fields. The emitter in the flame was identified as the main emitter in the SO2 afterglow. The measurements of the field strength dependence, collisional effect, and spectral distribution of the magnetic field effect revealed the major emitter as the SO2 in the C˜ state. External magnetic fields were also found to quench fluorescence remarkably emitted from the vibronic levels just below the predissociation threshold in the C˜ state. From the observed vibrational-level, field-strength, and pressure dependences of the magnetic quenching, it became evident that the major emitter of chemiluminescence in the flame could be assigned to the SO2 molecule in the vibronic levels located at about 800 cm–1 below the predissociation threshold in the C˜ state


2007 ◽  
Vol 3 (S247) ◽  
pp. 366-366
Author(s):  
Arnold O. Benz

Waves in solar and stellar atmospheres have been proposed more than fifty years ago to heat the chromosphere and the corona. Their usefulness as a means to explain an important phenomenon gave wave science its initial impetus. However, since then, waves and oscillations have become a great astrophysical topic of their own. In an inhomogeneous medium, waves occur in immense variety. The theory of waves explores this complexity and highlights modes and properties that are important in stellar atmospheres. We have seen steady progress in this fundamental endeavour that has recently been accelerated through the use of numerical simulations. The discovery, three decades ago, of waves in the solar and stellar interiors and later in the corona, although at low energy levels, opened a new field: the diagnostic use of waves. Seismology of the interior has become a booming field of solar and stellar physics, and observed oscillations have been used to derive the magnetic field strength and to explore the corona.


1976 ◽  
Vol 32 ◽  
pp. 613-622
Author(s):  
I.A. Aslanov ◽  
Yu.S. Rustamov

SummaryMeasurements of the radial velocities and magnetic field strength of β CrB were carried out. It is shown that there is a variability with the rotation period different for various elements. The curve of the magnetic field variation measured from lines of 5 different elements: FeI, CrI, CrII, TiII, ScII and CaI has a complex shape specific for each element. This may be due to the presence of magnetic spots on the stellar surface. A comparison with the radial velocity curves suggests the presence of a least 4 spots of Ti and Cr coinciding with magnetic spots. A change of the magnetic field with optical depth is shown. The curve of the Heffvariation with the rotation period is given. A possibility of secular variations of the magnetic field is shown.


2021 ◽  
Vol 11 (10) ◽  
pp. 4683
Author(s):  
Areum Lee ◽  
Chinnasamy Veerakumar ◽  
Honghyun Cho

This paper discusses the forced convective heat transfer characteristics of water–ethylene glycol (EG)-based Fe3O4 nanofluid and Fe3O4–MWCNT hybrid nanofluid under the effect of a magnetic field. The results indicated that the convective heat transfer coefficient of magnetic nanofluids increased with an increase in the strength of the magnetic field. When the magnetic field strength was varied from 0 to 750 G, the maximum convective heat transfer coefficients were observed for the 0.2 wt% Fe3O4 and 0.1 wt% Fe3O4–MWNCT nanofluids, and the improvements were approximately 2.78% and 3.23%, respectively. The average pressure drops for 0.2 wt% Fe3O4 and 0.2 wt% Fe3O4–MWNCT nanofluids increased by about 4.73% and 5.23%, respectively. Owing to the extensive aggregation of nanoparticles by the external magnetic field, the heat transfer coefficient of the 0.1 wt% Fe3O4–MWNCT hybrid nanofluid was 5% higher than that of the 0.2 wt% Fe3O4 nanofluid. Therefore, the convective heat transfer can be enhanced by the dispersion stability of the nanoparticles and optimization of the magnetic field strength.


1964 ◽  
Vol 42 (7) ◽  
pp. 1343-1357 ◽  
Author(s):  
Richard Stevenson

This paper contains a design of an aluminum solenoid magnet system capable of producing a field of 300 000 Oe over a bore of 5.8 cm. The magnetic field is produced by a two-region solenoid operated at 15 °K and cooled by compressed helium gas. Details of the structure are described, and calculations are given for all important parts of the cooling system. The magnet is designed for a total operating time at maximum power of at least 40 minutes in a week. The low capital expense of the system makes it suitable for installation in small laboratories.


2018 ◽  
Vol 615 ◽  
pp. A35 ◽  
Author(s):  
De-Fu Bu ◽  
Amin Mosallanezhad

Context. Observations indicate that wind can be generated in hot accretion flow. Wind generated from weakly magnetized accretion flow has been studied. However, the properties of wind generated from strongly magnetized hot accretion flow have not been studied. Aims. In this paper, we study the properties of wind generated from both weakly and strongly magnetized accretion flow. We focus on how the magnetic field strength affects the wind properties. Methods. We solve steady-state two-dimensional magnetohydrodynamic equations of black hole accretion in the presence of a largescale magnetic field. We assume self-similarity in radial direction. The magnetic field is assumed to be evenly symmetric with the equatorial plane. Results. We find that wind exists in both weakly and strongly magnetized accretion flows. When the magnetic field is weak (magnetic pressure is more than two orders of magnitude smaller than gas pressure), wind is driven by gas pressure gradient and centrifugal forces. When the magnetic field is strong (magnetic pressure is slightly smaller than gas pressure), wind is driven by gas pressure gradient and magnetic pressure gradient forces. The power of wind in the strongly magnetized case is just slightly larger than that in the weakly magnetized case. The power of wind lies in a range PW ~ 10−4–10−3 Ṁinc2, with Ṁin and c being mass inflow rate and speed of light, respectively. The possible role of wind in active galactic nuclei feedback is briefly discussed.


Author(s):  
Chuncheng Yang ◽  
Zhong Liu ◽  
Xiangyu Pei ◽  
Cuiling Jin ◽  
Mengchun Yu ◽  
...  

Magnetorheological fluids (MRFs) based on amorphous Fe-Si-B alloy magnetic particles were prepared. The influence of annealing treatment on stability and rheological property of MRFs was investigated. The saturation magnetization ( Ms) of amorphous Fe-Si-B particles after annealing at 550°C is 131.5 emu/g, which is higher than that of amorphous Fe-Si-B particles without annealing. Moreover, the stability of MRF with annealed amorphous Fe-Si-B particles is better than that of MRF without annealed amorphous Fe-Si-B particles. Stearic acid at 3 wt% was added to the MRF2 to enhance the fluid stability to greater than 90%. In addition, the rheological properties demonstrate that the prepared amorphous particle MRF shows relatively strong magnetic responsiveness, especially when the magnetic field strength reaches 365 kA/m. As the magnetic field intensified, the yield stress increased dramatically and followed the Herschel-Bulkley model.


2003 ◽  
Vol 13 (12) ◽  
pp. 3783-3789 ◽  
Author(s):  
F. E. SMITH ◽  
P. LANGLEY ◽  
L. TRAHMS ◽  
U. STEINHOFF ◽  
J. P. BOURKE ◽  
...  

Multichannel magnetocardiography measures the magnetic field distribution of the human heart noninvasively from many sites over the body surface. Multichannel magnetocardiogram (MCG) analysis enables regional temporal differences in the distribution of cardiac magnetic field strength during depolarization and repolarization to be identified, allowing estimation of the global and local inhomogeneity of the cardiac activation process. The aim of this study was to compare the spatial distribution of cardiac magnetic field strength during ventricular depolarization and repolarization in both normal subjects and patients with cardiac abnormalities, obtaining amplitude measurements by magnetocardiography. MCGs were recorded at 49 sites over the heart from three normal subjects and two patients with inverted T-wave conditions. The magnetic field intensity during depolarization and repolarization was measured automatically for each channel and displayed spatially as contour maps. A Pearson correlation was used to determine the spatial relationship between the variables. For normal subjects, magnetic field strength maps during depolarization (R-wave) showed two asymmetric regions of magnetic field strength with a high positive value in the lower half of the chest and a high negative value above this. The regions of high R-wave amplitude corresponded spatially to concentrated asymmetric regions of high magnetic field strength during repolarization (T-wave). Pearson-r correlation coefficients of 0.7 (p<0.01), 0.8 (p<0.01) and 0.9 (p<0.01) were obtained from this analysis for the three normal subjects. A negative correlation coefficient of -0.7 (p<0.01) was obtained for one of the subjects with inverted T-wave abnormalities, suggesting similar but inverted magnetic field and current distributions to normal subjects. Even with the high correlation values in these four subjects, the MCG was able to identify differences in the distribution of magnetic field strength, with a shift in the T-wave relative to the R-wave. The measurement of cardiac magnetic field distribution during depolarization and repolarization of normal subjects and patients with clinical abnormalities should enable the improvement of theoretical models for the explanation of the cardiac depolarization and repolarization processes.


2019 ◽  
Vol 21 (25) ◽  
pp. 13696-13705 ◽  
Author(s):  
Alexey S. Kiryutin ◽  
Bogdan A. Rodin ◽  
Alexandra V. Yurkovskaya ◽  
Konstantin L. Ivanov ◽  
Dennis Kurzbach ◽  
...  

The magnetic field strength during sample transfer in dissolution dynamic nuclear polarization influences the resulting spectra.


Sign in / Sign up

Export Citation Format

Share Document