scholarly journals Preliminary Testing to Determine the Best Process Parameters for Polymer Laser Sintering of a New Polypropylene Polymeric Material

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fredrick M. Mwania ◽  
Maina Maringa ◽  
Jakobus. G. van der Walt

Polymer laser sintering is an elaborate additive manufacturing technique because it is subject to process parameters and material properties. In this regard, each polymeric material necessitates a different set of process conditions. To this end, testing was done to determine the most suitable process parameters for a new commercially available polymer (Laser PP CP 60), from Diamond Plastics GmbH. It was established that the material requires slightly different settings from those provided by the supplier for the values for the removal chamber temperature, building chamber temperatures, and laser power to achieve the best mechanical properties (ultimate tensile strength). The preliminary testing indicates that the process parameters that yielded the best mechanical properties for the laser PP CP 60 powder were 125°C, 125°C, 0.15 mm, 250 μm, 4500 mm/s, 34.7 W, 1500 mm/s, and 21.3 W for the removal chamber temperature, building chamber temperature layer thickness, hatch distance, scanning speed fill, laser power fill, scanning speed contour, and laser power contour, respectively.


2020 ◽  
pp. 089270572093917
Author(s):  
Aboubaker IB Idriss ◽  
Jian Li ◽  
Yanling Guo ◽  
Yangwei Wang ◽  
Xingdong Li ◽  
...  

This article aims to improve the sintering quality of the sisal fiber/poly-(ether sulfone) (PES) composite (SFPC) part fabricated via selective laser sintering (SLS). The sisal fiber and PES powders were proposed as the feedstock of the SFPC powder bed for SLS. An orthogonal experimental methodology with four levels and five factors was applied to optimize the process parameters for the single-layer sintering experiment. The mechanical properties and accurate dimensions of the sintered part were tested using a universal testing machine and Vernier caliper. The preheating temperature, scanning speed, and laser power were selected as influencing factors on the mechanical properties and accuracy dimensions of the SFPC part. Furthermore, the influence factors on the quality of the sintered part were studied and analyzed. Additionally, the synthesis weighted scoring method was used to determine the optimum parameters of the SLS part. The results showed that the optimal parameters (factors) were preheating temperature of 82°C, scanning speed of 2 m s−1, laser power of 14 W, and laser wavelength of 10.6 μm. Thus, the quality of SFPC part was significantly enhanced when the optimum parameters were applied in SLS process. This article provided the main reference value for the choice of the process parameters of the biomass composite.



2010 ◽  
Vol 43 ◽  
pp. 578-582 ◽  
Author(s):  
C.Y. Wang ◽  
Q. Dong ◽  
X.X. Shen

Warpage is a crucial factor to accuracy of sintering part in selective laser sintering (SLS) process. In this paper, The influence of process parameters on warpage when sintering polystyrene(PS) materials in SLS are investigated. The laser power, scanning speed, hatch spacing, layer thickness as well as temperature of powder are considered as the main process parameters. The results showed that warpage increases with the increase of hatch space. Contary to it, warpage decreases with the increase of laser power. Warpage decreases with the increase of layer thickness between 0.16~0.18mm and changes little with increase of the thickness. Warpage increases along with the increase of scanning speed but decreases when the speed is over about 2000mm/s. When the temperature changes between 82°C-86°C, warpage decreases little with the increase of temperature. But further increase of temperature leads to warpage decreasing sharply when the temperature changes between 86°C-90°C.



Author(s):  
S. Ahmed ◽  
H. Doak ◽  
A. Mian ◽  
R. Srinivasan

During the DMLS process, sintering of the top layer creates melting and heat affected zone in previously sintered layers. In this paper, we will examine the effects of any given process parameter, such as laser power and laser scanning speed, on the mechanical properties and microstructural morphology within the processed layers.



Author(s):  
Genrik Mordas ◽  
Ada Steponavičiūtė ◽  
Aušra Selskienė ◽  
Jurijus Tretjakovas ◽  
Sergejus Borodinas

Additive manufacturing (AM) is a type of manufacturing technologies whereby the material is added a layer upon layer to produce a 3D object. Produced 3D parts are applied in such industry sectors as space, aviation, automotive, building and has excellent future promises. Ourdays, the commercialy promised technique for metal manufacturing is Direct Metal Laser Sintering (DMLS). Our study concentrated on the investigation of the mechanical properties of produced17-4H (stainless steel) parts using DMLS. The effect of the DMLS process parameters (laser power, scanning speed and energy density) on the ultimate strength, yield strength and Young’s modulus was determined. We showed an evolution of the microstructure. The detected defects were classified. This study allowed to determine the optimal regimes of DMLS for SS 17-4H and describe mechanical properties of the produced parts as well as helped to show future possibilities of DMLS development.



2020 ◽  
Vol 184 ◽  
pp. 01047 ◽  
Author(s):  
Pankaj Kumar ◽  
Gazanfar Mustafa Ali syed

Additive manufacturing (also known as 3D printing) process is an emerging technique for the fabrication of biomedical components. Selective laser sintering or melting is one of the widely used additive printing technology for manufacturing of metallic and non-metallic components used in the industry. This review paper presents, a summary of the published research papers on the fabrication of biomedical components using selective laser sintering technique. Therefore, author meticulously attempted to investigate individual biocompatible material-wise review which includes Ti6Al4V, Ti-7.5 Mo alloy, β-Ti35Zr28Nb, PEEK, PA2200, and Polyamide/Hydroxyapatite. In addition, this article also explores the effects of the various laser sintering process parameters such as laser power, scanning speed, density of the material on the mechanical properties, tribological properties, porosity and surface roughness of the fabricated alloy. Moreover, the author also investigated challenges and future prospective of the laser processing of biomedical implants.



Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 292 ◽  
Author(s):  
Kun Sun ◽  
Weixiang Peng ◽  
Longlong Yang ◽  
Liang Fang

Selective laser melting (SLM) to fabricate Al0.5CoCrFeNi high entropy alloys with pre-mixed powders was studied in this paper. The influences of process parameters including laser power, scanning speed, and hatch spacing on the relative density of high-entropy alloys (HEAs) were investigated. A relative density of 99.92% can be achieved by optimizing the SLM process parameters with laser power 320 W, scanning speed 800 mm/s, and hatch spacing of 60 μm, respectively. Moreover, the microstructure of the HEAs was also studied using scanning electron microscopy (SEM) and x-ray diffraction (XRD). It was found that the microstructure of the HEAs was only composed of face-centered cubic and body-centered cubic phases, without complex intermetallic compounds. The mechanical properties of the HEAs were also characterized. At ambient temperature, the alloys had a high yield strength of about 609 MPa, tensile strength about 878 MPa, and hardness about 270 HV. Through a comparison with the corresponding alloys fabricated by vacuum induction melting, it can be concluded that the high entropy alloys fabricated by SLM had fine microstructures and improved mechanical properties.



BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 4947-4962
Author(s):  
Jin Yan ◽  
Jianan Liu ◽  
Liqiang Zhang ◽  
Zhili Tan ◽  
Haoran Zhang ◽  
...  

The influence of the process parameters on the mechanical properties of compact wood powder generated via hot-pressing was analyzed through a single-factor experiment. The mechanical properties exhibited a nonlinear trend relative to the process conditions of hot-pressed compact wood powder. The relationship models between the process parameters and the mechanical properties for the compact wood powder were established by applying a multiple regression analysis and neural network methods combined with data from an orthogonal array design. A comparison between experimental and predicted results was made to investigate the accuracy of the established models by applying several data groups among the single-factor experiments. The results showed that the accuracy of the neural network model in terms of predicting the mechanical properties was greater compared with the multiple regression model. This demonstrates that the established neural network model had a better prediction performance, and it can accurately map the relationship between the process conditions and the mechanical properties of the compact wood powder.



2018 ◽  
Author(s):  
Mingsan Xu ◽  
Kerstern Malama ◽  
Bingbing Li

Laser cladding utilizes a high-powered laser to fuse and solidify the metal powders, which results in a complex change of physical and mechanical properties. Selection of parameters and creative structure design are critical for laser cladding technology. High-speed steel is cladded on the base metal 40Cr by diode laser to investigate the influence of curvature radius, scanning speed, gas flow and laser power. The micro hardness and residue stress are tested while the microstructure is analyzed. According to analysis of the process parameters in orthogonal experiment, the optimal parameters are: curvature radius 100 mm, laser power 1200W, gas flow 1000 L/h, and scanning speed 16 mm/s. Under the optimal parameters, the microstructure and grid is uniform and the grain growth is along the same direction.



2020 ◽  
Vol 4 (3) ◽  
pp. 108
Author(s):  
Tobias Heckner ◽  
Michael Seitz ◽  
Sven Robert Raisch ◽  
Gerrit Huelder ◽  
Peter Middendorf

In Selective Laser Sintering, fibres are strongly orientated during the powder recoating process. This effect leads to an additional increase of anisotropy in the final printed parts. This study investigates the influence of process parameter variation on the mechanical properties and the fibre orientation. A full factorial design of experiment was created to evaluate the processing parameters of recoating speed, layer thickness and laser power on the part’s modulus of elasticity. Based on the mechanical testing, computed tomography was applied to selected samples to investigate the process-induced fibre microstructure, and calculate the fibre orientation tensors. The results show increasing part stiffness in the deposition direction, with decreasing layer thickness and increasing laser power, while the recoating speed only shows little effect on the mechanical performance. This complies with computed tomography imaging results, which show an increase in fibre orientation with smaller layer thickness. With thinner layers, and hence smaller shear gaps, shear stresses induced by the roller during recoating increase significantly, leading to excessive fibre reorientation and alignment. The high level of fibre alignment implies an increase of strength and stiffness in the recoating direction. In addition, thinner layer thickness under constant laser energy density results in improved melting behaviour, and thus improved fibre consolidation, consequently further increasing the mechanical properties. Meanwhile, the parameters of recoating speed and laser power do not have a significant impact on fibre orientation within their applicable process windows.



Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 877
Author(s):  
Cong Ma ◽  
Xianshun Wei ◽  
Biao Yan ◽  
Pengfei Yan

A single-layer three-dimensional model was created to simulate multi-channel scanning of AlSi25 powder in selective laser melting (SLM) by the finite element method. Thermal behaviors of laser power and scanning speed in the procedure of SLM AlSi25 powder were studied. With the increase of laser power, the maximum temperature, size and cooling rate of the molten pool increase, while the scanning speed decreases. For an expected SLM process, a perfect molten pool can be generated using process parameters of laser power of 180 W and a scanning speed of 200 mm/s. The pool is greater than the width of the scanning interval, the depth of the molten pool is close to scan powder layer thickness, the temperature of the molten pool is higher than the melting point temperature of the powder and the parameters of the width and depth are the highest. To confirm the accuracy of the simulation results of forecasting excellent process parameters, the SLM experiment of forming AlSi25 powder was carried out. The surface morphology of the printed sample is intact without holes and defects, and a satisfactory metallurgical bond between adjacent scanning channels and adjacent scanning layers was achieved. Therefore, the development of numerical simulation in this paper provides an effective method to obtain the best process parameters, which can be used as a choice to further improve SLM process parameters. In the future, metallographic technology can also be implemented to obtain the width-to-depth ratio of the SLM sample molten pool, enhancing the connection between experiment and theory.



Sign in / Sign up

Export Citation Format

Share Document