scholarly journals Study on Cellular Structure and Mechanical Property of Foaming/Cross-linking Polyethylene System

2020 ◽  
Vol 185 ◽  
pp. 04053
Author(s):  
Bihua Xia ◽  
Weifu Dong

The cellular structure and mechanical property of a sequential foaming/cross-linking polyethylene system were studied in this work. By adjusting the components, foaming starts before the cross-linking reaction initiated and the melt strength increases during the foaming process. Rubber Process Analyzer (RPA) was used for the in situ monitoring and measuring of the foaming and cross-linking process. The cellular structure and expansion ratio of polyethylene foam can be modulated by controlling the type and ratio of foaming agent and cross-linking agent, as well as the foaming/cross-linking conditions. The mechanical strength was tested by universal mechanical testing machine, the melt strength were also characterized and analyzed. Experimental results demonstrated that the cross-linking controlled the cellular size and improved mechanical strength.

Author(s):  
Chunyang Bao ◽  
Xuhao Zhang ◽  
Pengdong Yu ◽  
Qingzhong Li ◽  
Yusheng Qin ◽  
...  

Degradable polymers that play an increasingly important role in the development of sustainable society are highly demanded to feature not only high mechanical strength, but also exhibit superior toughness. Herein,...


2015 ◽  
Vol 1089 ◽  
pp. 172-177
Author(s):  
Hui Liu ◽  
Qiang Li ◽  
Cheng Zhi Chuai ◽  
Zhe Wang

The pure PBS material has been taken irradiation cross-linking modification in order to improve the melt strength of PBS. The mechanical properties, sanitation performance and biodegradable properties of the modified PBS were investigated. The results showed that the modified PBS has fine hygiene performance. The mechanical property increased, but it reduced rapidly after put into the specific soil. The weight loss rate of PBS reached 50.86% after degradation in humus for 56 days.


Author(s):  
Elif Sensoy ◽  
Mahmoud Chizari

AbstractMost conventional material testing apparatuses are unable to assess poly-nanofibers sheets in biaxial directions. This study reports the design and prototyping of a biaxial tensile apparatus which can measure the mechanical property of a poly nanofibers patch. Several samples were assessed using the designed biaxial tensile testing machine and results recorded. Function of the apparatus was validated versus convention methods and outcome confirmed that it is accurate and reliable for testing poly nanofibers patch.


Author(s):  
Istebreq A. Saeedi ◽  
Sunny Chaudhary ◽  
Thomas Andritsch ◽  
Alun S. Vaughan

AbstractReactive molecular additives have often been employed to tailor the mechanical properties of epoxy resins. In addition, several studies have reported improved electrical properties in such systems, where the network architecture and included function groups have been modified through the use of so-called functional network modifier (FNM) molecules. The study reported here set out to investigate the effect of a glycidyl polyhedral oligomeric silsesquioxane (GPOSS) FNM on the cross-linking reactions, glass transition, breakdown strength and dielectric properties of an amine-cured epoxy resin system. Since many previous studies have considered POSS to act as an inorganic filler, a key aim was to consider the impact of GPOSS addition on the stoichiometry of curing. Fourier transform infrared spectroscopy revealed significant changes in the cross-linking reactions that occur if appropriate stoichiometric compensation is not made for the additional epoxide groups present on the GPOSS. These changes, in concert with the direct effect of the GPOSS itself, influence the glass transition temperature, dielectric breakdown behaviour and dielectric response of the system. Specifically, the work shows that the inclusion of GPOSS can result in beneficial changes in electrical properties, but that these gains are easily lost if consequential changes in the matrix polymer are not appropriately counteracted. Nevertheless, if the system is appropriately optimized, materials with pronounced improvements in technologically important characteristics can be designed.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2623
Author(s):  
Monika Wójcik-Bania ◽  
Jakub Matusik

Polymer–clay mineral composites are an important class of materials with various applications in the industry. Despite interesting properties of polysiloxanes, such matrices were rarely used in combination with clay minerals. Thus, for the first time, a systematic study was designed to investigate the cross-linking efficiency of polysiloxane networks in the presence of 2 wt % of organo-montmorillonite. Montmorillonite (Mt) was intercalated with six quaternary ammonium salts of the cation structure [(CH3)2R’NR]+, where R = C12, C14, C16, and R’ = methyl or benzyl substituent. The intercalation efficiency was examined by X-ray diffraction, CHN elemental analysis, and Fourier transform infrared (FTIR) spectroscopy. Textural studies have shown that the application of freezing in liquid nitrogen and freeze-drying after the intercalation increases the specific surface area and the total pore volume of organo-Mt. The polymer matrix was a poly(methylhydrosiloxane) cross-linked with two linear vinylsiloxanes of different siloxane chain lengths between end functional groups. X-ray diffraction and transmission electron microscopy studies have shown that the increase in d-spacing of organo-Mt and the benzyl substituent influence the degree of nanofillers’ exfoliation in the nanocomposites. The increase in the degree of organo-Mt exfoliation reduces the efficiency of hydrosilylation reaction monitored by FTIR. This was due to physical hindrance induced by exfoliated Mt particles.


2021 ◽  
Vol 45 (16) ◽  
pp. 7089-7095
Author(s):  
Bo Wang ◽  
Jinsheng Sun ◽  
Kaihe Lv ◽  
Feng Shen ◽  
Yingrui Bai

The Cr3+ can improve the cross-linking degree and network density of the GP-A gel, and enhance its strength and plugging ability to control lost circulation.


Sign in / Sign up

Export Citation Format

Share Document