scholarly journals Measurement of xylem water pressure using High-Capacity Tensiometer and benchmarking against Pressure Chamber and Thermocouple Psychrometer

2020 ◽  
Vol 195 ◽  
pp. 03014
Author(s):  
Roberta Dainese ◽  
Giuseppe Tedeschi ◽  
Thierry Fourcaud ◽  
Alessandro Tarantino

The response of the shallow portion of the ground (vadose zone) and of earth structures is affected by the interaction with the atmosphere. Rainwater infiltration and evapotranspiration affect the stability of man-made and natural slopes and cause shallow foundations and embankments to settle and heave. Very frequently, the ground surface is covered by vegetation and, as a result, transpiration plays a major role in ground-atmosphere interaction. The soil, the plant, and the atmosphere form a continuous hydraulic system, which is referred to as Soil-Plant-Atmosphere Continuum (SPAC). The SPAC actually represents the ‘boundary condition’ of the geotechnical water flow problem. Water flow in soil and plant takes place because of gradients in hydraulic head triggered by the negative water pressure (water tension) generated in the leaf stomata. To study the response of the SPAC, (negative) water pressure needs to be measured not only in the soil but also in the plant. The paper presents a novel technique to measure the xylem water pressure based on the use of the High-Capacity Tensiometer (HCT), which is benchmarked against conventional techniques for xylem water pressure measurements, i.e. the Pressure Chamber (PC) and the Thermocouple Psychrometer (TP).

2020 ◽  
Vol 5 (3) ◽  
pp. 26 ◽  
Author(s):  
S.M. Seyed-Kolbadi ◽  
M.A. Hariri-Ardebili ◽  
M. Mirtaheri ◽  
F. Pourkamali-Anaraki

This work evaluates the stability of the Boostan earth dam by investigating its long-term performance and interpreting the measured data. To measure the dam response, several sensitive locations are instrumented. This process includes measuring various quantities such as pore water pressure, water level, and internal stress ratios using inspection devices such as ordinary and Casagrande piezometers, and total pressure cells. The recorded data shows that the pore pressure is in good agreement with the initial (stable) design condition. The installed piezometers show that the drainage is efficient, and the water table in the body is adequate. The instrument also shows a reasonable horizontal stress in the dam body. Overall, the condition of the case study dam is assessed to be normal. The results of this case report can be used as a guide in similar dams for instrumented health monitoring.


2011 ◽  
Vol 90-93 ◽  
pp. 2112-2118 ◽  
Author(s):  
Xi Wen Zhang ◽  
Xiao Wei Tang ◽  
Qi Shao ◽  
Xu Bai

Soil liquefaction due to the earthquake causes serious damages and engineering problems, such as the reduction of the soil strength, large settlement of the ground surface, the flow of liquefied soil and the uplift behavior to the underground structures, and the large deformation induced by the uplift force threatens the stability and safety of the structures. In this paper, a FE-FD coupled method is used in the simulation, the cyclic elasto-plastic constitutive model and the updated lagrangian formulation are applied to deal with the material and geometrical nonlinearity of liquefied soil. The results show that after the earthquake, the exceed pore water pressure will still exist for some time and the structure has an obvious vertical uplift displacement related to the liquefied area and the flow of liquefied soil. The uplift displacement will decrease as the thickness of the upper liquefiable soil layer is reduced. The results can be regarded as a guidance and reference for the design of the large underground structures.


2014 ◽  
Vol 852 ◽  
pp. 406-411
Author(s):  
Jia Xiang Lou ◽  
Hong Fang Zhang ◽  
Ming Yu Gao ◽  
Zhi Wei He

In this paper, a kind of variable frequency and multi-pressure water supply control system based on STM32 processor is designed. It can adjust the water pressure dynamically, according to the changes of water flow. Therefore, it can economize the energy consumption significantly. In order to improve real-time performance, the system adopts STs STM32F407 series processor which is based on ARM® CortexTM-M4 32-bit RISC core. It is used to collect the water flow, pressure and other data in real time, and automatically adjust the output frequency to control the motor speed, according to the set pressure value, and ultimately control the flow and pressure of the water supply system. According to the test, this variable frequency and multi-pressure water supply control system based on STM32 processor can meet the design requirements.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2838
Author(s):  
Xiaoxing Zhang ◽  
Haoyuan Yi ◽  
Junjun Liu ◽  
Qi Li ◽  
Xin Luo

There has been a rising interest in compliant legged locomotion to improve the adaptability and energy efficiency of robots. However, few approaches can be generalized to soft ground due to the lack of consideration of the ground surface. When a robot locomotes on soft ground, the elastic robot legs and compressible ground surface are connected in series. The combined compliance of the leg and surface determines the natural dynamics of the whole system and affects the stability and efficiency of the robot. This paper proposes a bio-inspired leg compliance planning and implementation method with consideration of the ground surface. The ground stiffness is estimated based on analysis of ground reaction forces in the frequency domain, and the leg compliance is actively regulated during locomotion, adapting them to achieve harmonic oscillation. The leg compliance is planned on the condition of resonant movement which agrees with natural dynamics and facilitates rhythmicity and efficiency. The proposed method has been implemented on a hydraulic quadruped robot. The simulations and experimental results verified the effectiveness of our method.


1974 ◽  
Vol 11 (1) ◽  
pp. 182-201 ◽  
Author(s):  
René Marche ◽  
Robert Chapuis

The horizontal displacements measured at the toe of eight embankments are analyzed as a function of the factor of safety. The embankments are built on layers of soft clay. Only the undrained stage is studied.When the factor of safety of the embankments is higher than about 1.4, the horizontal displacements on the ground surface, at the toe of the embankment seem to follow an elastic law which is highly dependent on the ratio of the thickness of the soft layer to the width of the embankment. When the factor of safety is lower than about 1.4, the horizontal displacements do not follow an elastic law, they increase considerably. Consequently, it is suggested that the horizontal displacements be precisely measured at the toe of embankments during construction. These measurements are simple and sensitive to the approach of failure, they can be efficiently used to control the stability of embankments. This study also gives some information concerning the variation of horizontal displacements versus depth.


2003 ◽  
Vol 37 ◽  
pp. 281-285 ◽  
Author(s):  
Paul D. Bates ◽  
Martin J. Siegert ◽  
Victoria Lee ◽  
Bryn P. Hubbard ◽  
Peter W. Nienow

AbstractChannels incised into bedrock, or Nye channels, often form an important component of subglacial drainage at temperate glaciers, and their structure exerts control over patterns and rates of (a) channel erosion, (b) water flow-velocity and (c) water pressure. The latter, in turn, exerts a strong control over basal traction and, thus, ice dynamics. In order to investigate these controls, it is necessary to quantify detailed flow processes in subglacial Nye channels. However, it is effectively impossible to acquire such measurements from fully pressurized, subglacial channels. To solve this problem, we here apply a three-dimensional, finite-volume solution of the Reynolds averaged Navier– Stokes (RANS) equations with a one-equation mixing-length turbulence closure to simulate flow in a 3 m long section of an active Nye channel located in the immediate foreground of Glacier de Tsanfleuron, Switzerland. Numerical model output permits high-resolution visualization of water flow through the channel reach, and enables evaluation of the experimental manipulation of the pressure field adopted across the overlying ice lid. This yields an increased theoretical understanding of the hydraulic behaviour of Nye channels, and, in the future, of their effect on glacier drainage, geomorphology and ice dynamics.


2014 ◽  
Vol 608-609 ◽  
pp. 19-22
Author(s):  
Ping Xu ◽  
Jian Gang Yi

Hydraulic descaling system is the key device to ensure the surface quality of billet. However, traditional control methods lead to the stability problem in hydraulic descaling system. To solve the problem, the construction of the hydraulic descaling computer control system is studied, the working principle of the system is analyzed, and the high pressure water bench of hydraulic descaling is designed. Based on it, the corresponding computer control software is developed. The application shows that the designed system is stable in practice, which is helpful for enterprise production.


2016 ◽  
Vol 4 (1) ◽  
pp. 103-123 ◽  
Author(s):  
V. Wirz ◽  
S. Gruber ◽  
R. S. Purves ◽  
J. Beutel ◽  
I. Gärtner-Roer ◽  
...  

Abstract. In recent years, strong variations in the speed of rock glaciers have been detected, raising questions about their stability under changing climatic conditions. In this study, we present continuous time series of surface velocities over 3 years of six GPS stations located on three rock glaciers in Switzerland. Intra-annual velocity variations are analysed in relation to local meteorological factors, such as precipitation, snow(melt), and air and ground surface temperatures. The main focus of this study lies on the abrupt velocity peaks, which have been detected at two steep and fast-moving rock glacier tongues ( ≥  5 m a−1), and relationships to external meteorological forcing are statistically tested.The continuous measurements with high temporal resolution allowed us to detect short-term velocity peaks, which occur outside cold winter conditions, at these two rock glacier tongues. Our measurements further revealed that all rock glaciers experience clear intra-annual variations in movement in which the timing and the amplitude is reasonably similar in individual years. The seasonal decrease in velocity was typically smooth, starting 1–3 months after the seasonal decrease in temperatures, and was stronger in years with colder temperatures in mid winter. Seasonal acceleration was mostly abrupt and rapid compared to the winter deceleration, always starting during the zero curtain period. We found a statistically significant relationship between the occurrence of short-term velocity peaks and water input from heavy precipitation or snowmelt, while no velocity peak could be attributed solely to high temperatures. The findings of this study further suggest that, in addition to the short-term velocity peaks, the seasonal acceleration is also influenced by water infiltration, causing thermal advection and an increase in pore water pressure. In contrast, the amount of deceleration in winter seems to be mainly controlled by winter temperatures.


1997 ◽  
Vol 24 ◽  
pp. 175-180
Author(s):  
Krzysztof Szilder ◽  
Edward P. Lozowski ◽  
Martin J. Sharp

A model has been formulated to determine the stability regimes for water flow in a Subglacial conduit draining from a reservoir. The physics of the water flow is described with a set of differential equations expressing conservation of mass, momentum and energy. Non-steady flow of water in the conduit is considered, the conduit being simultaneously enlarged by frictional heating and compressed by plastic deformation in response to the pressure difference across the tunnel wall. With the aid of simplifying assumptions, a mathematical model has been constructed from two time-dependent, non-linear, ordinary differential equations, which describe the time evolution of the conduit cross-sectional area and the water depth in the reservoir. The model has been used to study the influence of conduit area and reservoir levels on the stability of the water flow for various glacier and ice-sheet configurations. The region of the parameter space where the system can achieve equilibrium has been identified. However, in the majority of cases the equilibrium is unstable, and an initial perturbation from equilibrium may lead to a catastrophic outburst of water which empties the reservoir.


Sign in / Sign up

Export Citation Format

Share Document