The Uplift Behavior of Large Underground Structures in Liquefied Field

2011 ◽  
Vol 90-93 ◽  
pp. 2112-2118 ◽  
Author(s):  
Xi Wen Zhang ◽  
Xiao Wei Tang ◽  
Qi Shao ◽  
Xu Bai

Soil liquefaction due to the earthquake causes serious damages and engineering problems, such as the reduction of the soil strength, large settlement of the ground surface, the flow of liquefied soil and the uplift behavior to the underground structures, and the large deformation induced by the uplift force threatens the stability and safety of the structures. In this paper, a FE-FD coupled method is used in the simulation, the cyclic elasto-plastic constitutive model and the updated lagrangian formulation are applied to deal with the material and geometrical nonlinearity of liquefied soil. The results show that after the earthquake, the exceed pore water pressure will still exist for some time and the structure has an obvious vertical uplift displacement related to the liquefied area and the flow of liquefied soil. The uplift displacement will decrease as the thickness of the upper liquefiable soil layer is reduced. The results can be regarded as a guidance and reference for the design of the large underground structures.

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Bo Huang ◽  
Jingwen Liu ◽  
Peng Lin ◽  
Daosheng Ling

Underground pipelines are widely applied in the so-called lifeline engineerings. It shows according to seismic surveys that the damage from soil liquefaction to underground pipelines was the most serious, whose failures were mainly in the form of pipeline uplifting. In the present study, dynamic centrifuge model tests were conducted to study the uplifting behaviors of shallow-buried pipeline subjected to seismic vibration in liquefied sites. The uplifting mechanism was discussed through the responses of the pore water pressure and earth pressure around the pipeline. Additionally, the analysis of force, which the pipeline was subjected to before and during vibration, was introduced and proved to be reasonable by the comparison of the measured and the calculated results. The uplifting behavior of pipe is the combination effects of multiple forces, and is highly dependent on the excess pore pressure.


2013 ◽  
Vol 438-439 ◽  
pp. 1171-1175
Author(s):  
Zhi Li Sui ◽  
Zhao Guang Li ◽  
Xu Peng Wang ◽  
Wen Li Li ◽  
Tie Jun Xu

Dynamic consolidation method has been widely used in improving soft land, but always inefficient to saturated soft clay land, which is hard to improve, and even leads to rubber soil. Dynamic and drain consolidation method will deal with it well, with drainage system, pore-water can be expelled instantly from saturated soft clay as impacting. The pore-water pressure and earth pressure test in construction, the standard penetration test, plate loading test, geotechnical test after construction, which are all effective methods for effect testing. There is a comprehensive detection through different depth of soil layer with different detecting means on construction site. The results show that improving saturated soft clay land with dynamic and drain consolidation method has obtained good effect, and the fruit can be guidance for such construction in the future.


2016 ◽  
Vol 4 (1) ◽  
pp. 103-123 ◽  
Author(s):  
V. Wirz ◽  
S. Gruber ◽  
R. S. Purves ◽  
J. Beutel ◽  
I. Gärtner-Roer ◽  
...  

Abstract. In recent years, strong variations in the speed of rock glaciers have been detected, raising questions about their stability under changing climatic conditions. In this study, we present continuous time series of surface velocities over 3 years of six GPS stations located on three rock glaciers in Switzerland. Intra-annual velocity variations are analysed in relation to local meteorological factors, such as precipitation, snow(melt), and air and ground surface temperatures. The main focus of this study lies on the abrupt velocity peaks, which have been detected at two steep and fast-moving rock glacier tongues ( ≥  5 m a−1), and relationships to external meteorological forcing are statistically tested.The continuous measurements with high temporal resolution allowed us to detect short-term velocity peaks, which occur outside cold winter conditions, at these two rock glacier tongues. Our measurements further revealed that all rock glaciers experience clear intra-annual variations in movement in which the timing and the amplitude is reasonably similar in individual years. The seasonal decrease in velocity was typically smooth, starting 1–3 months after the seasonal decrease in temperatures, and was stronger in years with colder temperatures in mid winter. Seasonal acceleration was mostly abrupt and rapid compared to the winter deceleration, always starting during the zero curtain period. We found a statistically significant relationship between the occurrence of short-term velocity peaks and water input from heavy precipitation or snowmelt, while no velocity peak could be attributed solely to high temperatures. The findings of this study further suggest that, in addition to the short-term velocity peaks, the seasonal acceleration is also influenced by water infiltration, causing thermal advection and an increase in pore water pressure. In contrast, the amount of deceleration in winter seems to be mainly controlled by winter temperatures.


2022 ◽  
Author(s):  
Sahila Beegum ◽  
P J Jainet ◽  
Dawn Emil ◽  
K P Sudheer ◽  
Saurav Das

Abstract Soil pore water pressure analysis is crucial for understanding landslide initiation and prediction. However, field-scale transient pore water pressure measurements are complex. This study investigates the integrated application of simulation models (HYDRUS-2D/3D and GeoStudio–Slope/W) to analyze pore water pressure-induced landslides. The proposed methodology is illustrated and validated using a case study (landslide in India, 2018). Model simulated pore water pressure was correlated with the stability of hillslope, and simulation results were found to be co-aligned with the actual landslide that occurred in 2018. Simulations were carried out for natural and modified hill slope geometry in the study area. The volume of water in the hill slope, temporal and spatial evolution of pore water pressure, and factor of safety were analysed. Results indicated higher stability in natural hillslope (factor of safety of 1.243) compared to modified hill slope (factor of safety of 0.946) despite a higher pore water pressure in the natural hillslope. The study demonstrates the integrated applicability of the physics-based models in analyzing the stability of hill slopes under varying pore water pressure and hill slope geometry and its accuracy in predicting future landslides.


Author(s):  
Chao-Lung Yeh ◽  
Wei-Cheng Lo ◽  
Cheng-Wei Lin ◽  
Chung-Feng Ding

Abstract. There are many factors causing land subsidence, and groundwater extraction is one of the most important causes of subsidence. A set of coupled partial differential equations are derived in this study by using the poro-elasticity theory and linear stress-strain constitutive relation to describe the one-dimensional consolidation in a saturated porous medium subjected to pore water pressure change due to groundwater table depression. Simultaneously, the closed-form analytical solutions for excess pore water pressure and total settlement are obtained. To illustrate the consolidation behavior of the poroelastic medium, the saturated layer of clay sandwiched between two sand layers is simulated, and the dimensionless pore water pressure changes with depths and the dimensionless total settlement as function of time in the clay layer are examined. The results show that the greater the water level change in the upper and lower sand layers, the greater the pore water pressure change and the total settlement of the clay layer, and the more time it takes to reach the steady state. If the amount of groundwater replenishment is increased, the soil layer will rebound.


2020 ◽  
Vol 195 ◽  
pp. 03014
Author(s):  
Roberta Dainese ◽  
Giuseppe Tedeschi ◽  
Thierry Fourcaud ◽  
Alessandro Tarantino

The response of the shallow portion of the ground (vadose zone) and of earth structures is affected by the interaction with the atmosphere. Rainwater infiltration and evapotranspiration affect the stability of man-made and natural slopes and cause shallow foundations and embankments to settle and heave. Very frequently, the ground surface is covered by vegetation and, as a result, transpiration plays a major role in ground-atmosphere interaction. The soil, the plant, and the atmosphere form a continuous hydraulic system, which is referred to as Soil-Plant-Atmosphere Continuum (SPAC). The SPAC actually represents the ‘boundary condition’ of the geotechnical water flow problem. Water flow in soil and plant takes place because of gradients in hydraulic head triggered by the negative water pressure (water tension) generated in the leaf stomata. To study the response of the SPAC, (negative) water pressure needs to be measured not only in the soil but also in the plant. The paper presents a novel technique to measure the xylem water pressure based on the use of the High-Capacity Tensiometer (HCT), which is benchmarked against conventional techniques for xylem water pressure measurements, i.e. the Pressure Chamber (PC) and the Thermocouple Psychrometer (TP).


2018 ◽  
Vol 174 ◽  
pp. 01001
Author(s):  
Giovanni Bosco ◽  
Lucia Simeoni

The increased demand for food causes intensive farming with high yield production and large water consumption to extend significantly. Depending on soil properties, seasonal rainfall, surface drainage and water resources, hence the consumption-infiltration balance, the ground water table might be raised or depleted; soils could be saturated or remain partly saturated with negative pore pressures. As a result sloping grounds may become prone to shallow slides, as mudflows, or deep seated movements, involving large volumes of soil, especially after rupture of major watering lines or after long uncontrolled irrigations. Within this framework the paper investigates the possible effects of replacing grassland with intensive apple farming on the stability conditions of slopes. Apples require frequent watering, especially during spring and summer to meet qualitative and quantitative productive standards. Also, sprinkler irrigation is often used to protect against hail. From the precipitation, irrigation, runoff, evaporation and plant transpiration balance, the evolution of the pore water pressure distribution within an average year is calculated. Then the modified shear strength of the unsaturated-saturated soils is determined and the factor of safety against sliding is calculated.


2014 ◽  
Vol 4 (3) ◽  
Author(s):  
Mohammed Fattah ◽  
Mohammed Al-Neami ◽  
Nora Jajjawi

AbstractThe present research is concerned with predicting liquefaction potential and pore water pressure under the dynamic loading on fully saturated sandy soil using the finite element method by QUAKE/W computer program. As a case study, machine foundations on fully saturated sandy soil in different cases of soil densification (loose, medium and dense sand) are analyzed. Harmonic loading is used in a parametric study to investigate the effect of several parameters including: the amplitude frequency of the dynamic load. The equivalent linear elastic model is adopted to model the soil behaviour and eight node isoparametric elements are used to model the soil. Emphasis was made on zones at which liquefaction takes place, the pore water pressure and vertical displacements develop during liquefaction. The results showed that liquefaction and deformation develop fast with the increase of loading amplitude and frequency. Liquefaction zones increase with the increase of load frequency and amplitude. Tracing the propagation of liquefaction zones, one can notice that, liquefaction occurs first near the loading end and then develops faraway. The soil overburden pressure affects the soil liquefaction resistance at large depths. The liquefaction resistance and time for initial liquefaction increase with increasing depths. When the frequency changes from 5 to 10 rad/sec. (approximately from static to dynamic), the response in displacement and pore water pressure is very pronounced. This can be attributed to inertia effects. Further increase of frequency leads to smaller effect on displacement and pore water pressure. When the frequency is low; 5, 10 and 25 rad/sec., the oscillation of the displacement ends within the period of load application 60 sec., while when ω = 50 rad/sec., oscillation continues after this period.


1993 ◽  
Vol 30 (3) ◽  
pp. 464-475 ◽  
Author(s):  
K.D. Eigenbrod

Slow, shallow ground movements in a slope near Yellowknife caused excessive tilting of timber piles that supported an engineering structure. To avoid damage to the structure, the pile foundations had to be replaced by rigid concrete piers that were designed to resist the forces of the moving soil mass. Downhill movements were rather slow and, during an initial inspection, were indicated only by soil that was pushed up against a series of piles on their uphill sides, while gaps had formed on their downhill sides. No open cracks or bulging was observed on the slope. A stability analysis indicated that the slope was not in a state of limit equilibrium. To obtain a better understanding of the creep movements in the slope and their effect on the rigid concrete piers, extensive instrumentation was carried out after the construction of the piers. This included slope indicators, piezometers, thermistors, and total-pressure cells against one of the concrete piers. In addition, a triaxial testing program was undertaken in which the effect of cyclic pore-water pressure changes on the long-term deformations of the shallow clay layer was investigated. From the data collected in the field and laboratory, it could be concluded that (i) tilting of the original timber piles was caused by downslope movements related to cyclic pore-water increases; (ii) the lateral soil movements increased almost linearly with depth from 2 m below the ground surface, with no indication of a slip surface; and (iii) the pressures exerted by the moving soil mass against the rigid concrete piers within the soil mass were equal to the passive resistance activated within the moving soil mass. Key words : soil creep, slope movements, soil pressures, pore-water pressures, freezing pressures, permafrost, cyclic loading.


2012 ◽  
Vol 49 (6) ◽  
pp. 651-658 ◽  
Author(s):  
Pérsio L.A. Barros ◽  
Petrucio J. Santos

A calculation method for the active earth pressure on the possibly inclined face of a retaining wall provided with a drainage system along the soil–structure interface is presented. The soil is cohesionless and fully saturated to the ground surface. This situation may arise during heavy rainstorms. To solve the problem, the water seepage through the soil is first analyzed using a numerical procedure based on the boundary element method. Then, the obtained pore-water pressure is used in a Coulomb-type formulation, which supposes a plane failure surface inside the backfill when the wall movement is enough to put the soil mass in the active state. The formulation provides coefficients of active pressure with seepage effect which can be used to evaluate the active earth thrust on walls of any height. A series of charts with values of the coefficients of active earth pressure with seepage calculated for selected values of the soil internal friction angle, the wall–soil friction angle, and the wall face inclination is presented.


Sign in / Sign up

Export Citation Format

Share Document