scholarly journals Comprehensive Exploration and three-dimensional construction technology of water plug based on directional horizontal drilling caved column

2021 ◽  
Vol 237 ◽  
pp. 03003
Author(s):  
Gan Tian

The ordovician limestone water inrush accident occurred during the excavation of 8228 working face in Tashan Coal Mine, Tongmei Group. On the basis of comprehensive geophysical exploration above and below the well, in order to find out the development boundary of the water flowing subsided column and the distribution characteristics of the broken body filled in it, and to control the subsided column by Grouting, the development boundary, the influence zone, the cementation of the fractured body and the distribution characteristics of the water flowing subsided column are found out by means of multi-layer and multi-branch surface directional horizontal drilling speed logging, drilling fluid leakage, cuttings logging and logging while drilling, and combined with data statistical analysis. The length and short axis of the collapse column is 410m - 200m, and the broken area is mainly distributed in the right front of the driving head of the belt roadway near the water inrush roadway. The 3d geological modeling of the spatial structure and development characteristics of the collapse column is carried out by using SURPAC software, and the main passageway area, fracture area and secondary fracture area are divided according to the crushing degree of the collapse column filling material. In view of the different zones of the collapse column broken body, the directional horizontal drilling control technology and the three-dimensional block grouting technology are used to construct the separate zones of the grouting technology. The safe mining of the working face is finally realized by the comprehensive treatment of cutting the source and reinforcing the water-flowing collapse column. The comprehensive exploration and treatment technology of directional horizontal drilling multi-branch collapse column provides a good reference for other similar projects.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zhengzheng Cao ◽  
Yulou Ren ◽  
Qinting Wang ◽  
Banghua Yao ◽  
Xinchao Zhang

There are many karst collapse columns in coal seam roof in the southern coal field in China, which are different from those in coal seam floor in the northern coal field, due to the stratum characteristics. The karst collapse column in coal seam roof tends to reactivate and conduct water and induce the serious water inrush disaster, when the karst collapse column communicates with the overlying aquifer. In order to reveal the evolution mechanism of water-conducting channel of collapse column in karst mining area of southwest China, the aquifers and water inflow rule in 1908 working face in Qianjin coal mine are analyzed. Besides, the particle size distribution and mineral component of collapse column are researched by the X-ray diffraction test and the screening method, which are the basis for researching the water inrush mechanism in karst collapse column. On this basis, the water inrush of roof collapse column under the influence of mining is researched by establishing the numerical calculation model with the UDEC numerical software. The results show that the water flowing into the 1908 working face comes from the Changxing formation aquifer and Yulongshan formation aquifer above the coal seam, and the proportion of coarse particles and fine particles in collapse column is 89.86% and 10.14%, respectively. With the advance of working face, the water-conducting channel connected the working face with the aquifer, or the surface is formed by collapse pits, karst caves, and collapse column. The research results can be treated as an important basis for the water-preserved mining in southern coal field in China.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhibin Lin ◽  
Boyang Zhang ◽  
Xiaofei Gong ◽  
Limin Sun ◽  
Wenzhen Wang ◽  
...  

The filling material of the karst collapse column (KCC) is easy to be activated by mining. During this process, the mechanical properties of KCC fillings change, and its water resisting capacity constantly deteriorates and thus often leads to water inrush disaster. In this study, the samples of KCC fillings were taken on-site and then were remolded by the consolidation drainage method. The variation laws of the compressive strength, tensile strength, cohesive stress, internal friction angle, and permeability of the filling samples with respect to the consolidation pressure and moisture content were tested and analyzed. Based on an engineering example, the yield and activation and particle loss of the filling material of the KCC are analyzed. A mechanism for the lagging water inrush of KCC in the process of mining is proposed. The main results of the present study can be concluded concisely as follows. (1) The KCC fillings show obvious soft rock characteristics in the process of uniaxial compression and Brazilian split. The ratio of the uniaxial compressive strength to splitting tensile strength is between 12 : 1 and 8 : 1. The larger the consolidation pressure or the smaller the moisture content, the larger the ratio. (2) With the increase of consolidation pressure or the decrease of moisture content, the uniaxial compressive strength, elastic modulus, splitting tensile strength, cohesive stress, and internal friction angle of the filling material of the KCC increase linearly, while its permeability increases exponentially. (3) When the crack field of the surrounding rocks of the stope is connected with the KCC, its filling material will continue to yield, activate, and migrate under the fluid-solid coupling effect and finally result in the lagging water inrush from the KCC.


2021 ◽  
Author(s):  
Haitao Xu ◽  
hui yang ◽  
Wenbin Sun ◽  
Lingjun Kong ◽  
Peng Zhang

Abstract In order to find out the characteristics of geological isomer exposed in the mining process of 12318 working face in Pansan Mine and grasp its influence law on subsequent coal seams mining, the isomer was firstly determined as the collapse column by means of 3D seismic, transient electromagnetic detection, SYT detection and other methods, and its development characteristics, conductivity and water enrichment were identified.Then FLAC3D numerical simulation software was used to analyze the characteristics of vertical stress and plastic failure zone in different coal seams during mining.Finally, by comparing the ultimate failure depth of floor and the thickness of waterproof layer in the process of each coal seam directly pushing through the collapse column, the risk of water inrush and the prevention are analyzed.The results show that the exposed geological isomer is characterized by weak water-rich collapse column.Under the influence of the mining of the previous coal seam and the activation of the collapse column, the subsequent coal seam is in the low stress area before mining, which increases the floor failure and causes the activation of the collapse column more easily during mining.Coal 5# and 4# can be directly pushed through the collapse column, and coal pillar of sufficient width should be left for coal 1# to prevent the collapse column from activating water inrush.


2020 ◽  
Vol 10 (11) ◽  
pp. 1027-1039
Author(s):  
Huachao Sun ◽  
Huide Zhang ◽  
Jinyun Wang ◽  
Xianzhuang Lv ◽  
Xin Ding ◽  
...  

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Shijian Yu ◽  
Jiyang Liu ◽  
Peng Bai ◽  
Hongtao Xu ◽  
Runshan He ◽  
...  

In this study, the X5 KCC in Shiquan Coal Mine was investigated by means of controlled source audio magnetotelluric exploration and borehole television. In this way, the subsection geological structure of the KCC was obtained. Next, the geological and electrical characteristics of each part were analyzed, and it is concluded that the development status of the mud part under coal seam floor is the key part to judging whether water inrush will occur during working face recovery under aquifer pressure. Furthermore, the mineral compositions of purplish-red mudstone and lime mudstone were obtained by performing an X-ray diffraction experiment on the KCC interstitial materials. On this basis, the water insulation properties of the mud part were qualitatively evaluated. Finally, the tensile strength of the mud part was obtained by the Brazilian splitting method, and the water insulation ability of the mud part at the periods when the tunneling roadway and the working face passed the KCC was calculated, respectively. The research results boast guiding significance for safe recovery of the working face passing KCCs under aquifer pressure.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 724-732
Author(s):  
Changchun Ji ◽  
Yudong Wang

AbstractTo investigate the distribution characteristics of the three-dimensional flow field under the slot die, an online measurement of the airflow velocity was performed using a hot wire anemometer. The experimental results show that the air-slot end faces have a great influence on the airflow distribution in its vicinity. Compared with the air velocity in the center area, the velocity below the slot end face is much lower. The distribution characteristics of the three-dimensional flow field under the slot die would cause the fibers at different positions to bear inconsistent air force. The air velocity of the spinning centerline is higher than that around it, which is more conducive to fiber diameter attenuation. The violent fluctuation of the instantaneous velocity of the airflow could easily cause the meltblowing fiber to whip in the area close to the die.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Gang Mei

Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized.


2021 ◽  
Vol 261 ◽  
pp. 03003
Author(s):  
Qin Ke ◽  
Peng Dong ◽  
Duan Huijun

two roadways in adjacent working face of Baode Mine may have the risk of water inrush at the same time, so it is necessary to construct long borehole to cover the roadway excavation. On the basis of the hydrogeological conditions of the mine, the safe water insulation thickness and water inrush coefficient of coal seam No .8 are calculated. The results show that the water inrush coefficient is 0.035-0.037 MPa/m, which is less than the critical value 0.06 MPa/m and the bottom plate has no sudden water hazard. In the construction of No .10 coal seam, the directional long borehole is used to detect whether there is a hidden structure communicating with the floor limestone and to drain water. The test shows that there is no effluent phenomenon in the borehole, which proves that there is no hidden structure in No .10 coal seam.


2021 ◽  
Author(s):  
Daniel Pflieger ◽  
Miguel de la Varga Hormazabal ◽  
Simon Virgo ◽  
Jan von Harten ◽  
Florian Wellmann

<p>Three dimensional modeling is a rapidly developing field in geological scientific and commercial applications. The combination of modeling and uncertainty analysis aides in understanding and quantitatively assessing complex subsurface structures. In recent years, many methods have been developed to facilitate this combined analysis, usually either through an extension of existing desktop applications or by making use of Jupyter notebooks as frontends. We evaluate here if modern web browser technology, linked to high-performance cloud services, can also be used for these types of analyses.</p><p>For this purpose, we developed a web application as proof-of-concept with the aim to visualize three dimensional geological models provided by a server. The implementation enables the modification of input parameters with assigned probability distributions. This step enables the generation of randomized realizations of models and the quantification and visualization of propagated uncertainties. The software is implemented using HTML Web Components on the client side and a Python server, providing a RESTful API to the open source geological modeling tool “GemPy”. Encapsulating the main components in custom elements, in combination with a minimalistic state management approach and a template parser, allows for high modularity. This enables rapid extendibility of the functionality of the components depending on the user’s needs and an easy integration into existing web platforms.</p><p>Our implementation shows that it is possible to extend and simplify modeling processes by creating an expandable web-based platform for probabilistic modeling, with the aim to increase the usability and to facilitate access to this functionality for a wide range of scientific analyses. The ability to compute models rapidly and with any given device in a web browser makes it flexible to use, and more accessible to a broader range of users.</p>


Sign in / Sign up

Export Citation Format

Share Document