scholarly journals Research on Forecasting Method of Distribution Network Investment Scale of Municipal Power Supply Enterprise Considering Power Supply Division and Cost Difference Level

2021 ◽  
Vol 245 ◽  
pp. 01032
Author(s):  
Gou Quanfeng ◽  
Yang Jie ◽  
Zhou Fei ◽  
Hu Lin ◽  
Yu Guangxiu ◽  
...  

In recent years, in order to adapt to the situation of rapid economic and social development, my country’s power supply companies have invested large-scale funds to build distribution networks, and upgraded urban and rural power grids, effectively supporting the rapid growth of power demand and the reliability of power supply. Continuous improvement of power quality. While the scale of investment in the distribution network continues to remain high, problems such as focusing on investment and neglecting revenue, focusing on project establishment and neglecting management also exist to varying degrees. Therefore, reasonably predicting the scale of investment in the distribution network and improving the lean management level of the investment and construction of the distribution network have become key issues that power supply companies need to solve. This paper takes my country’s municipal power supply companies as the research object, combines the actual business development of the company’s distribution network investment planning, and fully considers the impact of the company’s power supply district management and the level of cost differences on the investment scale of the distribution network, and builds a fit on this basis. The distribution network investment planning forecast model of the actual business work of the enterprise guides the municipal power supply enterprises to improve the lean management level of the distribution network investment and construction.

2012 ◽  
Vol 433-440 ◽  
pp. 1802-1810 ◽  
Author(s):  
Lin Guan ◽  
Hao Hao Wang ◽  
Sheng Min Qiu

A new algorithm as well as the software design for large-scale distribution network reliability assessment is proposed in this paper. The algorithm, based on fault traversal algorithm, obtains network information from the GIS. The structure of distribution network data storage formats is described, facilitating automatic output of the feeders’ topological and corresponding information from the GIS. Also the judgment of load transfer is discussed and the method for reliability assessment introduced in this paper. Moreover, The impact of the scheduled outage is taken into account in the assessment model, making the results more in accordance with the actual situation. Test Cases show that the proposed method features good accuracy and effectiveness when applied to the reliability assessment of large-scale distribution networks.


2014 ◽  
Vol 960-961 ◽  
pp. 1077-1080 ◽  
Author(s):  
Bo Lun Wang

Near the load of distribution network access distributed networks, the entire distribution network load distribution will change, system trend then change, then the trend of the distribution network can also be changed from the original "one-way flow" to "two-way flow". For synchronous generator connected to the power distribution network, the input active power and reactive power at the same time to the system, can reduce the loss and the voltage distribution network can play a supporting role, but for asynchronous induction generator connected to the power distribution network, the input to the system active power and reactive power absorption, reduce the power factor of the grid. By trend analysis found that introducing asynchronous induction generator to increase distribution network loss, deterioration in transmission line voltage level. Distributed generators after introducing the distribution network could reduce may also increase the system network loss.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3610 ◽  
Author(s):  
Syahrul Nizam Md Saad ◽  
Adriaan Hendrik van der Weijde

Connection of a significant amount of distributed generation, such as solar photovoltaic (PV) capacity, may lead to problems in distribution networks due to violations of distribution network hosting capacity (HC) limits. HC enhancement techniques, such as energy storage, could increase the allowable PV penetration level in the distribution network, reducing the need for transmission and large-scale generation expansion. However, current approaches for transmission and generation expansion planning do not account for distribution network HC limits. As a consequence, it is hard to quantify the impact and benefits of HC enhancement in the context of long-term grid expansion planning. This paper presents a novel integrated planning approach, combining a two-stage transmission and generation expansion planning model with a distribution network hosting capacity assessment, which allows for inclusion of detailed distribution network constraints We test this method on a stylized representation of the Malaysian grid. Our results show that distribution constraints have a significant impact on optimal transmission expansion plans and significantly increase overall system costs. HC enhancement in the form of battery storage does not significantly mitigate this but does lead to a cost decrease regardless of distribution network constraints. We also show how our approach can identify the key interactions between transmission and distribution networks in systems with high levels of renewable and storage technologies. In particular, HC enhancement with battery storage can act as a substitute or complement to line investment, depending on the renewable energy penetration, the storage location and the level of coordination in the network.


2013 ◽  
Vol 385-386 ◽  
pp. 1053-1058
Author(s):  
Hui Peng ◽  
Sheng Fang Li ◽  
Ya Jun Li ◽  
Yuan Yuan Li ◽  
Jian Ding ◽  
...  

Recently, the development of Chinese wind power generation has formally entered the strategic transformation stage with the combination of large-scale integrated exploitation and distributed access exploitation. It is suitable to adopt distribution access mode due to the characteristics of Chongqings planning wind farm including small generation capacity and distributed location. However, considering that most of planning wind farms are located in the mountain area of northeast and southeast Chongqing with the large-scale geographic area and small load request and the distribution networks are relatively weak, there may be remarkable effect on quality of electric energy even though the distribution access mode is adopted. In this paper, aiming at the voltage fluctuation of access point, the relationships among variables affecting the voltage fluctuation is analyzed, then taking two planning wind farms in northeast and southeast Chongqing respectively as examples, the effects of voltage fluctuation caused by different access points are calculated and analyzed in order to get the allowed maximum capacity of wind farms fitting national standards. In the end, the proposals relevant to the development of wind power and contribution of distribution network are submitted according to the case results.


Author(s):  
Xin Shen ◽  
Hongchun Shu ◽  
Min Cao ◽  
Nan Pan ◽  
Junbin Qian

In distribution networks with distributed power supplies, distributed power supplies can also be used as backup power sources to support the grid. If a distribution network contains multiple distributed power sources, the distribution network becomes a complex power grid with multiple power supplies. When a short-circuit fault occurs at a certain point on the power distribution network, the size, direction and duration of the short-circuit current are no longer single due to the existence of distributed power, and will vary with the location and capacity of the distributed power supply system. The change, in turn, affects the current in the grid, resulting in the generation and propagation of additional current. This power grid of power electronics will cause problems such as excessive standard mis-operation, abnormal heating of the converter and component burnout, and communication system failure. It is of great and practical significance to study the influence of distributed power in distributed power distribution networks.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4717 ◽  
Author(s):  
Sylvester Johansson ◽  
Jonas Persson ◽  
Stavros Lazarou ◽  
Andreas Theocharis

Social considerations for a sustainable future lead to market demands for electromobility. Hence, electrical power distribution operators are concerned about the real ongoing problem of the electrification of the transport sector. In this regard, the paper aims to investigate the large-scale integration of electric vehicles in a Swedish distribution network. To this end, the integration pattern is taken into consideration as appears in the literature for other countries and applies to the Swedish culture. Moreover, different charging power levels including smart charging techniques are examined for several percentages of electric vehicles penetration. Industrial simulation tools proven for their accuracy are used for the study. The results indicate that the grid can manage about 50% electric vehicles penetration at its current capacity. This percentage decreases when higher charging power levels apply, while the transformers appear overloaded in many cases. The investigation of alternatives to increase the grid’s capabilities reveal that smart techniques are comparable to the conventional re-dimension of the grid. At present, the increased integration of electric vehicles is manageable by implementing a combination of smart gird and upgrade investments in comparison to technically expensive alternatives based on grid digitalization and algorithms that need to be further confirmed for their reliability for power sharing and energy management.


2018 ◽  
Vol 20 (4) ◽  
pp. 417-429 ◽  
Author(s):  
Satyabrata Dash ◽  
Sukanta Dey ◽  
Deepak Joshi ◽  
Gaurav Trivedi

Purpose The purpose of this paper is to demonstrate the application of river formation dynamics to size the widths of power distribution network for very large-scale integration designs so that the wire area required by power rails is minimized. The area minimization problem is transformed into a single objective optimization problem subject to various design constraints, such as IR drop and electromigration constraints. Design/methodology/approach The minimization process is carried out using river formation dynamics heuristic. The random probabilistic search strategy of river formation dynamics heuristic is used to advance through stringent design requirements to minimize the wire area of an over-designed power distribution network. Findings A number of experiments are performed on several power distribution benchmarks to demonstrate the effectiveness of river formation dynamics heuristic. It is observed that the river formation dynamics heuristic outperforms other standard optimization techniques in most cases, and a power distribution network having 16 million nodes is successfully designed for optimal wire area using river formation dynamics. Originality/value Although many research works are presented in the literature to minimize wire area of power distribution network, these research works convey little idea on optimizing very large-scale power distribution networks (i.e. networks having more than four million nodes) using an automated environment. The originality in this research is the illustration of an automated environment equipped with an efficient optimization technique based on random probabilistic movement of water drops in solving very large-scale power distribution networks without sacrificing accuracy and additional computational cost. Based on the computation of river formation dynamics, the knowledge of minimum area bounded by optimum IR drop value can be of significant advantage in reduction of routable space and in system performance improvement.


2021 ◽  
Vol 13 (22) ◽  
pp. 12379
Author(s):  
Raymond Kene ◽  
Thomas Olwal ◽  
Barend J. van Wyk

The future direction of electric vehicle (EV) transportation in relation to the energy demand for charging EVs needs a more sustainable roadmap, compared to the current reliance on the centralised electricity grid system. It is common knowledge that the current state of electricity grids in the biggest economies of the world today suffer a perennial problem of power losses; and were not designed for the uptake and integration of the growing number of large-scale EV charging power demands from the grids. To promote sustainable EV transportation, this study aims to review the current state of research and development around this field. This study is significant to the effect that it accomplishes four major objectives. (1) First, the implication of large-scale EV integration to the electricity grid is assessed by looking at the impact on the distribution network. (2) Secondly, it provides energy management strategies for optimizing plug-in EVs load demand on the electricity distribution network. (3) It provides a clear direction and an overview on sustainable EV charging infrastructure, which is highlighted as one of the key factors that enables the promotion and sustainability of the EV market and transportation sector, re-engineered to support the United Nations Climate Change Agenda. Finally, a conclusion is made with some policy recommendations provided for the promotion of the electric vehicle market and widespread adoption in any economy of the world.


2021 ◽  
Vol 9 ◽  
Author(s):  
Liu Shengli ◽  
Wu Jun ◽  
Xue Longjiang ◽  
Wu Di ◽  
Lu Haiqing ◽  
...  

Aiming at the problems of low power supply reliability, poor transfer capacity between stations, and low line utilization in the current distribution network, this paper proposes a diamond-shaped distribution network structure with a clear structure. First, we investigated the typical wiring patterns of medium-voltage distribution networks in Tokyo, Japan, Paris, France, and China’s developed cities, and summarized experience and shortcomings. Secondly, combining the typical wiring patterns of distribution networks in China and abroad, construct a diamond-shaped distribution network structure, and study its adaptability, safety and flexibility, power supply reliability, and economy. Finally, take the transformation of the wiring mode of a regional distribution network in a certain city as an example, compare the use of the diamond-shaped distribution network structure in this article with the use of cable double-ring network wiring, cable “double petal” wiring, and Shanghai diamond-type wiring distribution network grid reconstruction The effect verifies the superiority of the diamond-shaped distribution network structure in this paper.


2020 ◽  
Vol 12 (21) ◽  
pp. 9247
Author(s):  
Mingyuan Zhang ◽  
Juan Zhang ◽  
Gang Li ◽  
Yuan Zhao

Water distribution networks (WDNs), an interconnected collection of hydraulic control elements, are susceptible to a small disturbance that may induce unbalancing flows within a WDN and trigger large-scale losses and secondary failures. Identifying critical regions in a water distribution network (WDN) to formulate a scientific reinforcement strategy is significant for improving the resilience when network disruption occurs. This paper proposes a framework that identifies critical regions within WDNs, based on the three metrics that integrate the characteristics of WDNs with an external service function; the criticality of urban function zones, nodal supply water level and water shortage. Then, the identified critical regions are reinforced to minimize service loss due to disruptions. The framework was applied for a WDN in Dalian, China, as a case study. The results showed the framework efficiently identified critical regions required for effective WDN reinforcements. In addition, this study shows that the attributes of urban function zones play an important role in the distribution of water shortage and service loss of each region.


Sign in / Sign up

Export Citation Format

Share Document