scholarly journals Simulation based assessment on representativeness of a new performance rating procedure for cold climate air source heat pumps

2021 ◽  
Vol 246 ◽  
pp. 06004
Author(s):  
Alex Lachance ◽  
Justin Tamasauskas ◽  
Stéphanie Breton ◽  
Solange Prud’homme

Cold climate air-to-air heat pumps (CCHP) offer a strong potential for energy use reductions in Canadian homes. Proper selection of the unit is critical in order to take advantage of the improved efficiency and increased heat capacity at low ambient temperatures and ability to modulate to meet a wide range of heating loads. A new performance rating procedure (CSA EXP07) was developed to better represent the seasonal energy efficiency of CCHP systems versus current test procedures that do not always accurately characterize the response to dynamic loads in a colder climate zones, thus resulting in inaccurate equipment rating. To validate the representativeness of the new performance rating procedure and quantify the potential over-or underestimation of energy savings using current performance rating procedures, a CCHP data-driven model is developed and simulated in a code-compliant single-detached Canadian home for different climate regions: Marine, Cold-Humid, Cold-Dry, Very-Cold and Subarctic. These energy models then serve as the basis for comparing the seasonal heating coefficient of performance of a CCHP system, which can be compared to the current and newly proposed performance rating procedure.

2021 ◽  
Vol 298 ◽  
pp. 126799
Author(s):  
S. Smitt ◽  
I. Tolstorebrov ◽  
P. Gullo ◽  
A. Pardiñas ◽  
A. Hafner
Keyword(s):  

MRS Bulletin ◽  
2022 ◽  
Author(s):  
Shuang Cui ◽  
Adewale Odukomaiya ◽  
Judith Vidal

Abstract Because of the complexity of modern buildings—with many interconnected materials, components, and systems—fully electrifying buildings will require targeted R&D and efficient coordination across those material, component, and system levels. Because buildings that consume the smallest amount of energy are easier to electrify, energy efficiency is a crucial step toward fully electrified buildings. Materials advances will play an important role in both reducing the energy intensity of buildings and electrifying their remaining energy use. Materials are currently being explored, discovered, synthesized, evaluated, optimized, and implemented across many building components, including solid-state lighting; dynamic windows and opaque envelopes; cold climate heat pumps; thermal energy storage; heating, ventilating, and air conditioning (HVAC); refrigeration; non-vapor compression HVAC; and more. In this article, we review the current state-of-the-art of materials for various buildings end uses and discuss R&D challenges and opportunities for both efficiency and electrification. Graphical abstract


Author(s):  
Yahya I. Sharaf-Eldeen

This work involves measurements, analyses, and evaluation of performance of air-source heat pump water heaters (HPWHs), and their impacts on electric utility loads. Two add-on, heat pumps (HPs) rated at 7000 BTU/h (2.051 kW) and 12,000 BTU/h (3.517 kW) were utilized. The HPs were retrofitted to two 50 gal (189.3 l) electric water heaters (EWHs) with their electric heating elements removed. A third standard EWH was used for comparison. The testing setups were fully instrumented for measurements of all pertinent parameters, including inlet and outlet water temperatures, inlet and outlet air temperatures of the HPs, temperature and humidity of the surrounding air, volume of water drawn out of the storage tanks, as well as the electric energy consumptions of the systems. Performance measures evaluated included the coefficient of performance, the energy factor (EF), and the first hour rating (FHR). The HPWH systems gave EFs ranging from 1.8 to 2.5 and corresponding energy savings (and reductions in utility peak loads) ranging from 49.0% to 63.0%, approximately. The values obtained in the summer months were, as expected, somewhat higher than those obtained in the winter ones. The average values of the EFs and energy savings (and reductions in utility peak loads) were about 2.1 and 56.0%, respectively. FHR results were much lower for the HPWHs compared with those for the standard EWH. These results show that HPWHs are much more efficient compared with standard EWHs. While the average value of the EF for the EWH was about 0.92, the HPWHs yielded EFs averaging more than 2.00, resulting in annual energy savings averaging more than 50%. The results also show that HPWHs are effective at reducing utility peak loads, in addition to providing substantial cost savings to consumers.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Je-hyeon Lee ◽  
Piljae Im ◽  
Jeffrey D. Munk ◽  
Mini Malhotra ◽  
Min-seok Kim ◽  
...  

The energy performance of a variable refrigerant flow (VRF) system was evaluated using an occupancy-emulated research building in the southeastern region of the United States. Full- and part-load performance of the VRF system in heating and cooling seasons was compared with a conventional rooftop unit (RTU) variable-air-volume system with electric resistance heating. During both the heating and cooling seasons, full- and part-load conditions (i.e., 100%, 75%, and 50% thermal loads) were maintained alternately for 2 to 3 days each, and the energy use, thermal conditions, and coefficient of performance (COP) for the RTU and VRF system were measured. During the cooling season, the VRF system had an average COP of 4.2, 3.9, and 3.7 compared with 3.1, 3.0, and 2.5 for the RTU system under 100%, 75%, and 50% load conditions and resulted in estimated energy savings of 30%, 37%, and 47%, respectively. During the heating season, the VRF system had an average COP ranging from 1.2 to 2.0, substantially higher than the COPs of the RTU system, and resulted in estimated energy savings of 51%, 47%, and 27% under the three load conditions, respectively.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3125 ◽  
Author(s):  
Yuan ◽  
Lin ◽  
Mao ◽  
Li ◽  
Yang ◽  
...  

This study presents the development and evaluation of a novel partially open-loop heat pump dryer with a unit-room (HPDU). The unit-room was designed to enable the ambient air to be mixed with the return air, thereby reducing the influence of the ambient air on the system performance, while maintaining a high system thermal efficiency. A modelling system for the HPDU was developed and validated based on a real-scale experimental study. By using the modelling system, the system characteristics under different ambient conditions and bypass factors were analyzed. The energy benefit of the proposed HPDU was quantified through a comparative study with a closed-loop heat pump dryer (CHPD). It is evident that a maximal specific moisture extraction rate (SMER) and a minimal total energy consumption (TEC) existed when changing the bypass factor of the HPDU under certain ambient temperatures. Compared to the CHPD, the coefficient of performance (COP) of the HPDU increased by up to 39.56%, presenting a significant energy benefit for the application of HPDU.


2021 ◽  
Vol 13 (11) ◽  
pp. 5843
Author(s):  
Mehdi Chihib ◽  
Esther Salmerón-Manzano ◽  
Mimoun Chourak ◽  
Alberto-Jesus Perea-Moreno ◽  
Francisco Manzano-Agugliaro

The COVID-19 pandemic has caused chaos in many sectors and industries. In the energy sector, the demand has fallen drastically during the first quarter of 2020. The University of Almeria campus also declined the energy consumption in 2020, and through this study, we aimed to measure the impact of closing the campus on the energy use of its different facilities. We built our analysis based upon the dataset collected during the year 2020 and previous years; the patterns evolution through time allowed us to better understand the energy performance of each facility during this exceptional year. We rearranged the university buildings into categories, and all the categories reduced their electricity consumption share in comparison with the previous year of 2019. Furthermore, the portfolio of categories presented a wide range of ratios that varied from 56% to 98%, the library category was found to be the most influenced, and the research category was found to be the least influenced. This opened questions like why some facilities were influenced more than others? What can we do to reduce the energy use even more when the facilities are closed? The university buildings presented diverse structures that revealed differences in energy performance, which explained why the impact of such an event (COVID-19 pandemic) is not necessarily relevant to have equivalent variations. Nevertheless, some management deficiencies were detected, and some energy savings measures were proposed to achieve a minimum waste of energy.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3756
Author(s):  
Weimin Wang ◽  
Jian Zhang ◽  
Michael R. Brambley ◽  
Benjamin Futrell

Variable-air-volume (VAV) systems are used in many office buildings. The minimum airflow rate setting of VAV terminal boxes has a significant impact on both energy consumption and indoor air quality. Conventional controls usually have the terminal’s minimum airflow rate at a constant (e.g., 30% or more of the terminal design airflow rate), irrespective of the occupancy status, which may cause problems, such as excessive simultaneous heating and cooling, under ventilation, and thermal comfort issues. This paper examines the potential of energy savings from occupancy-based controls (OBCs). The sensed occupancy information, either occupant presence or people count, is used to determine the airflow rate of terminal boxes, the thermostat setpoints, and the lighting control. Using EnergyPlus, a whole-building energy modeling software, the energy savings of OBC strategies are evaluated for representative existing medium office buildings in the U.S. The simulation results show that the conventional OBC, based on occupant presence sensing, can save 8% of whole-building energy use in Miami (hot climate) for systems without air-side economizer and about 13% in both Baltimore (mixed climate) and Chicago (cold climate). Comparatively, the advanced OBC, based on people counting, can save 8% in Miami to 23% in Baltimore for systems with economizers. The outdoor-air fraction of the supply air from air-handling units significantly affects the potential energy savings from the advanced OBC strategy. In addition to energy savings, the advanced OBC satisfies the zone ventilation during all occupied hours over the whole year.


2018 ◽  
Vol 9 (1) ◽  
pp. 119 ◽  
Author(s):  
Evangelos Bellos ◽  
Christos Tzivanidis

Heat pumps are efficient and well-established technologies for providing the proper cooling load in the building sector. The objective of this work is the parametric investigation of a heat pump operating with the promising refrigerant R152a for different operating conditions. More specifically, the heat pump is studied for different ambient temperatures, different indoor temperatures and various compressor rotational speeds. The cooling capacity and the coefficient of performance (COP) are the most important parameters which calculated in every scenario. A detailed model is developed in Engineering Equations Solver (EES) and it is validated with literature data. According to the final results, the system can operate in nominal conditions with 5 kW cooling capacity and a COP equal to 6.46. It is found that the COP can be ranged from 4 to 12 and the cooling capacity, while the cooling capacity can reach up to 9 kW. Moreover, a regression equation about the performance of the system is suggested. The obtained results indicate that the use of the R152a leads to high performance and so it can be an environmentally friendly choice for the cooling systems.


2012 ◽  
Vol 9 (2) ◽  
pp. 65
Author(s):  
Alhassan Salami Tijani ◽  
Nazri Mohammed ◽  
Werner Witt

Industrial heat pumps are heat-recovery systems that allow the temperature ofwaste-heat stream to be increased to a higher, more efficient temperature. Consequently, heat pumps can improve energy efficiency in industrial processes as well as energy savings when conventional passive-heat recovery is not possible. In this paper, possible ways of saving energy in the chemical industry are considered, the objective is to reduce the primary energy (such as coal) consumption of power plant. Particularly the thermodynamic analyses ofintegrating backpressure turbine ofa power plant with distillation units have been considered. Some practical examples such as conventional distillation unit and heat pump are used as a means of reducing primary energy consumption with tangible indications of energy savings. The heat pump distillation is operated via electrical power from the power plant. The exergy efficiency ofthe primary fuel is calculated for different operating range ofthe heat pump distillation. This is then compared with a conventional distillation unit that depends on saturated steam from a power plant as the source of energy. The results obtained show that heat pump distillation is an economic way to save energy if the temperaturedifference between the overhead and the bottom is small. Based on the result, the energy saved by the application of a heat pump distillation is improved compared to conventional distillation unit.


Sign in / Sign up

Export Citation Format

Share Document